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Stress relaxation of near-critical gels
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The time-dependent stress relaxation for a Rouse model of a cross-linked polymer melt is completely
determined by the spectrum of eigenvalues of the connectivity matrix. The latter has been computed analyti-
cally for a mean-field distribution of cross-links. It shows a Lifshitz tail for small eigenvalues and all concen-
trations below the percolation threshold, giving rise to a stretched exponential decay of the stress relaxation
function in the sol phase. At the critical point the density of states is finite for small eigenvalues, resulting in
a logarithmic divergence of the viscosity and an algebraic decay of the stress relaxation function. Numerical
diagonalization of the connectivity matrix supports the analytical findings and has furthermore been applied to
cluster statistics corresponding to random bond percolation in two and three dimensions.
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I. INTRODUCTION Winter and co-workerg5] observe a wide range of exponent
values 0.2 A<0.9, depending on molecular weight and sto-
The most striking observation in near-critical gels is theichiometry. The experimental support for a universal
anomalous stress relaxatiph] that precedes the transforma- stretched exponential law is weak. Whereas Masiral.
tion of the viscous fluid into an elastic amorphous solid, i.e.,confirm the stretched exponential decay and qué+e0.4
the gelation transition. Here, polymer systems are consid:3], other studies reveal nonuniversal exponegtsThe di-
ered, where the viscoelastic behavior is controlled by thesergence of the time scalg® ~ e Z in the scaling function
concentratiorc of cross-links connecting monomers of dif- was determined in viscoelastic measurementszas.9
ferent molecules. At a critical concentratiog;, the gelation  +0.2 [3,2] and deduced from static measurements of the
transition occurs. Viscoelastic studies by several groups havshear modulus az=4.0+0.6 [6]. The experimental values
revealed the following characteristic features of stress relaxfor k, the critical exponent of the viscosity, vary in the range
ation. (1) In the sol phase, well below the gelation transition,0.7<k<1.4. The origin of the scatter in the experimental
one observes a stretched exponential decay of the stress iata is not clear. One possible explanation is the size of the
laxation functiony(t) ~exp—(t/7*)~. (2) The time scaler*  critical region, which is known to depend on the degree of
~¢€ * diverges as the critical point is approached. Here polymerization. Hence experiments with different samples
= (cqit— C)/Cqit denotes the distance from the critical point. have to cope with different sizes of the critical region and
(3) The viscosityn, which is given as the integral over the possibly strong crossover effects.

stress relaxation function, diverges as ¢ ¥ as the critical In this paper we study the simplest dynamic model—
point is approached4) At the critical point, stress relaxation Rouse dynamics—in the presence of a time-dependent shear
is algebraic in timey(t)~t~2. flow by means of analytical calculations and numerical simu-

Whereas the stretched exponential decay is characteristiations. Within this model, the frequency-dependent stress
of the sol phase and holds for all cross-link concentrationselaxation is completely determined by the spectral proper-
c<cCit, the last three observations refer to critical behaviorties of the connectivity matrid’, which specifies which
as the gel point is approached. If dynamic scaling holdsmonomers are cross-linked. As a function of the total con-
these findings can be cast in a scaling ansatz for the stresentration of cross-links, one observes in general a perco-
relaxation functiony(e,t), which depends on time and dis- lation transition at a critical concentratiag,;, such that for

tance from the critical poing, c<cgit N0 macroscopic clusters of connected particles exist,
whereas forc>c,,; the system percolates. In the context of
x(c,t)=€""*g(t/ 7™ (¢)) (1)  gelation the fraction of sites in the macroscopic cluster has

been identified with the gel fraction and the percolation tran-
with 7 ~ €%, Given a certain distancefrom the gel point,  sition has been shown to mark the onset of solidificafitin
one expects to see a crossover from an algebraic decay at The connectivity matriX” is a positive semidefinite, ran-
intermediate times to a stretched exponential decay afom matrix, which has been studied in various contexts, e.g.,
asymptotically large times. The scaling ansatz implies diluted ferromagnets, diffusion in sparsely connected spaces
=(z—k)/z. Dynamic scaling as implied by Eql) is well  [8], anomalous relaxation in glassy systems, and localization
confirmed experimentally2] for the intermediate time re- [9]. In all cases the system consistshbfiertices(monomers
gime wherey(t) decays like a power law. However, the in the context of gelationwhich are connected byN edges
values for the exponents scatter considerably. Maetial.  (cross-links. A given realization of the connectivity matrix
[3] and Adolf and Martir{2] find A=0.7+0.05 in agreement can be decomposed into connected components or clusters.
with the valueA=0.7+0.02 of Durandet al. [4], whereas Each cluster has one zero eigenvalue that describes the dif-
fusive motion of the center of mass of the cluster. The re-
maining nonzero eigenvalues determine the stress relaxation
*Deceased. function and are discussed in this paper. In the simplest case
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(mean field one chooses the edges independently out of althe static shear viscosity. We summarize our results in Sec. V.
possibleN(N—1)/2 edges. The density of eigenvalues canSome detailed calculations have been deferred to Appen-
be computed analytically for the above simple distributiondixes.
and has been discussed in R¢B9] in the percolating re- Our paper is an extension of previous work, in which we
gime, i.e.,c=c.;. In this paper we focus on the range discussed the static shear visco$it,13 and self-diffusion
C<cCgy, Which corresponds to the sol phase and the critical14] in the sol phase as well as at the gelation transition.
point. For cross-links of unit strength the spectrumlofs ~ There it was shown that the long time limit of the incoherent
shown to consist of functions only, whereas it is smooth Scattering function is determined by the zero eigenvalues of
for fluctuating cross-link strength. In both cases the spectrurthe connectivity matrix, and the static shear viscosity is de-
goes to zero for small eigenvalues as a Lifshitz singularitytermined by the trace of the Moore-Penrose inverse of the
for all c<cg;,. The spectrum determines the time-dependengonnectivity matrix. Here we focus on thell spectrum of
stress relaxation functiog(t). All characteristic features of €igenvalues, which also determines the decay of the stress
x(t) as discussed in the first paragraph above are reproducéglaxation affinite times.
by the mean-field model. The stretched exponential decay for
long times can be traced back to the Lifshitz singularity of Il. MODEL AND OBSERVABLES
the spectrum for small eigenvalues. At the critical point, the
spectrum approaches a finite value for small eigenvalues, . L -
gR/ing rise Fopa logarithmic divergence of the sta?tic sheareach c_haracterlzed_ by 't.‘e’ tmg-dependent position vector
viscosity in agreement with previous studies. In mean-fieltﬁi(t) .(':1’ T N) in d-dimensional space Of. volum\i‘,.
theory the exponents are found to ie=1/3,A=1, and I.e., with densityp=N/V. M permanent_ cross-lln_k_s qr/e in-
z=3. These results have been confirmed by numerical diagdrduced between randomly chosen pairs of partidlgs {).
nalization of the connectivity matrik. (esultlng in a cross-link concent_rat|m:n= M./N. These cross-
The last approach can be extended to finite-dimensiondinks are modeled by a harmonic potential
connectivities, corresponding to two- and three-dimensional M
percolation. The stress relaxation function is found to decay U ::i 2 Ao(R, —R;)? )
algebraically at the critical point, i.e.x(t)~t 2 with 29261 % e e
A~0.74 (d=2) andA~0.83 (d=3). In the sol phase one
observes a crossover from algebraic decay at intermediatghose overall strength is controlled by the parametei0.
times to stretched exponential decay at long times. The ni/e use units of energy such thgiT=1 and allow for fluc-
merically determined spectra can also be used to compute theations in the strength of cross-links by introducing the pa-
static shear viscosity. We find for the critical exponentrameter\,. Cross-links of uniform strength correspond to all
k~1.19 d=2) andk=0.75 (d=3). These values are in A.=1.In general each cross-lirdis assigned independently
reasonable agreement with a scaling relafib@ based on arandom strength, according to the distributiop(\). The
an exact correspondence between the viscosity and the restennectivity of the particles is specified by the connectivity
tance of a random resistor network. Using high precisiormatrix
data[11,12 for the conductivity exponent of the latter, one
obtainsk~1.17 @=2) andk~0.71 d=3). M
The paper is organized as follows. In the following sec- I‘ii’:’;::l el 5iie_ 5iig)(5i’ie_ 5i’i,;)v ©)
tion (Sec. 1) we introduce the dynamic model and the ob-
servables that we want to discuss and that can be related {9 terms  of which the potential reads U
tShe smactrum of eltgtinvaluelst.of Ithelcoln?ectlv]:ty {Eatrlx. |n=(d/2a2)ZiNi,:1F”,Ri-Ri,. As usuals; denotes the Kro-
e, Eresen he e calculons or e e sy, .9, 1 for =) and zero thenwse
: . L . We consider purely relaxational dynamics in an externally
vation of a self-consistent equation for the spectrum, which__ . ’ - i
was previously given by Bray and Rodgé8d. We then go applied space- and time-dependent velocity fiefg(r,t):
on to discuss the appearance of Lifshitz tails for small eigen-
values. For cross-links of unit strength the spectrum is shown aR(t) = — 1 U
to consist of a countable set éfpeaks. We present an ana- ' £ 9R”
lytical scheme to systematically compute the spectrum by
iteration. We also consider cross-links of fluctuating strengthHere, Greek indices indicate Cartesian coordinates
for which the spectrum is continuous and can be obtained by Xx,y,z, . . ., and wewill always consider a flow field in the
standard numerical means from the self-consistent integrad direction, increasing linearly witly, i.e.,
equation. In Sec. IV we present results from a numerical
diagonalization of random connectivity matrices. We first VeI 1) = g xi (D)1 y, 6)
compute the spectrum for a mean-field distribution of cross- ) )
links and compare it to the analytical results. Next, cluste™ith a time-dependent shear rat¢t). The noise£ has zero
distributions of random bond percolation in two and threemean and covariance £X(t) &5 (t'))=2¢ "1 8, 561 8(t
dimensions are considered. Data for the stress relaxatiort’), whered(t) is the Diracé function. Here, the bracket
function are presented as well as finite-size scaling plots fo¢- - -) indicates the average over the realizations of the

We consider a system & identical Brownian particles,

(D +vedRi(D), O+ & (). (4
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Gaussian nois&. The relaxation constant is denoted by 1 N
The probability distribution of cross-link configuratior® C(t):=1lim <— Z [Ri(t+T)—Ri(T)]2>- (10
={i,,il}M | as well as the probability distribution of cross- Toe 0T
link strengths will be specified later.

In Ref. [10] we computed the shear viscosity in the sol
phase for(macrgmolecular units of arbitrary internal con-
nectivity. It was shown that the dependence on the cross-lin

concentration and in particular the critical behavior near the G, (t):= lim ([R;(t+ T)~ R{(T)]-[Ri/(t+ T) =R (T)])

We note thaR;(t+ T) —R;(t) is a Gaussian Markov pro-
cess whose distribution in the limit— oo is characterized by
Evanishing mean and the covariance function

gelation threshold are the same for @thacromolecular Tooo

units, as long as we consider identical units with a finite

degree of polymerization. We expect the same universal be- 1t 2dr

havior for stress relaxation on long time scales, which are = _deT exp — EF . (11
i’

much larger than the longest internal time scale of a single
(macrgmolecule. Hence we specialize to the simplest units

) : Performing the integral in Eq11) leads to
namely, Brownian particles. ¢ g q1D

2| a2 1-E, 2dt
A. Relaxation of shear stress Gii ()= Zl2d T 1—exp = EF +1Eg
We aim at the computation of the intrinsic shear stress ”(12)
o,.p5(1) as a funqtion of the shear raLg(t). For the simple o _ _ _
shear flow(5), a linear response relation The matrixI" is non-negative by inspectidisee Eq(2)], as
it should be to ensure relaxation to equilibrium. The scatter-
[t ing function as well as the time delayed displacement can be
Txy(1) = j,xdTX(t_T)K(T) ©) expressed in terms @;;,(t) via
1 N
is valid for arbitrary strengths of the shear ratét). The S(q,t)=— 2 exp{—qZG“(t)} (13)
linear response or shear relaxation functjg(t) is given in N =1
terms of the connectivity matrix as explained in detail in Ref.
and
[13],
1 N
C()=5 2 Gi(t). (14
N i=1

Z|o

N 2dt
x()=3 >, ([1— Eo<g>1exp| - —Zr(@] )
i=1 la i
C. Density of eigenvalues

P 2dt All dynamic quantities of interest have been expressed in
—.NTr([l—Eo(g)]epr —QF(Q)] ) ) terms of T Accordingly, once we know the eigenvalues
{yi}!\Ll and eigenvectors of this matrix, we can compute

. : ynamic observables for arbitrary times. In the following, we
The matrix E, denotes the projector onto th(_e subspace oﬂhall discuss the density of eigenvalues
zero eigenvalues df (see Ref[10]). For a time-independent

shear ratec(t) = «, the stress tensor is time independent and 1 N 1
related to the shear rate=p n« via the static shear viscos- D ¥)= lim = >, 8(y— )= lim =Tr8(y—T)
ity, given by Ref.[10], N—oo N I=1 N—oo
(15
2 _
fa 1-Eo(9) (8) for several cross-link distributions. Here the overbar denotes

77 2dN rg - the average over cross-link realizations. If one splits off the
zero eigenvalued) () can be written as
B. Self-diffusion

Diot ¥)=To(€)6(y) +[1—=To(c)ID (), (16)
To discuss self-diffusion we set the externally applied ve- _ _ _
locity field to zero and focus on the incoherent scatteringvhereD(y) is normalized to 1 and contains only the non-
function zero eigenvalues. If we group the particles into clusters, the

eigenspace of modes with zero eigenvalues corresponds to
vectors that are constant within one clusf&d]. In other

N
1 .
S(g,t):=lim { 5 > explig [Ri(t+T)=Ri(T)1}) (9  words, there is one zero eigenvalue for each cluster and the

T =t dimension of the null space is just the number of clusters
N¢ . The weight of zero eigenvalues is simply given by the
and the squared time delayed displacement density of clusters, i.eTy(c)=Ng/N.
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We restrict ourselves to the density of eigenvalues and do 1
not attempt to compute eigenvectors, which is in general G(Q)=lim NTr ) (23
more difficult. Hence, we can compute only observables that N—eo

can be written as (N)Ei’\‘:l[f(l“)]” , Wheref is an arbitrary
function of I'. The incoherent scattering function is not of
this form[Eq. (13)], whereas the stress relaxation function is

for complex argumenf)=y+ie,e>0. In the limit e—0,
we recover the spectrum from the imaginary part of the re-
solvent according to

- ® 2dt 1
X(t):[l_To(C)]PL dYD(Y)eXDI - EV}- 17 Dioly)=—lim ImG(y+ie). (24)
€l0

The zero eigenvalues are not to be included in the integralt can be inferred from Eq(15) that, converselyD ()
tion, due to the term *E, in Eq. (7). Analogously, the determinesG(Q) via

averaged viscosity is given by D)
o totl ¥
G(Q)—ledy =0 (25)

— {a? J = D(y)
n=[1-To(O)]54 . d?’T- (18
A. Disorder average by replicas
In the same way, the disorder averaged, time delayed dis- Bray and RodgerE8] have shown how to reduce the com-

placement is determined by putation of D,,(y) for cross-links of unit strengtfi.e., all
) Ne=1) to the solution of a nonlinear integral equation. Their
- a® (= D(y) 2dt derivation is easily generalized to cross-links of strength
C(t)_[l_TO(C)]EfO dy y (1—exp{ - EV that fluctuates according to a given distributipt\). We
restrict ourselves to distribution®(\) such that
2t
+To(C)—. (19 =d\
{ f P <e (26)
0

It can also be expressed as an integral over the time- . . ,
dependent response function, holds. It will be shown beloysee Eq(37)] that this condi-

tion is necessary to ensure a finite viscosity in the sol phase.
Following Bray and Rodgers we introduce a generating func-

C(t) 2 ftd (7)+To( )2t (200 i
= TX(T C)—. on

plo XTI

2= | R P L P
lll. MEAN FIELD THEORY N\ i1 20 247 T mua e

We consider first the simplest distribution of cross-links, (27)
which ignoreS all correlations between CFOSS-"nkS, i.e., thQNh|Ch determines the reso'vent, according to
cross-links are chosen independently of each other and each
pair (ie,is) of particle indices is realized with equal prob- . 24dInz
ability. As shown in Ref[15] the particle clusters exhibit the G(Q)::"m N 20 (28)

analog of a percolation transition at a critical cross-link con-

centrationc.;=1/2. Below this concentration there is N0 he ayerage over the disorder is performed with the replica
macroscopic cluster and almost all finite clusters are treeg., resulting in

The average number of tree clustérs with n particles is

given in the macroscopic limit by N n dpe i N
- . o
= —|exp 50
. T n""2(2ce 2%)" LN('Hl al_=[1 277) p(z 'zlmb'
N 2w &0 . v
+ ] IO 2 e A ’2—CN). (29)
ihj=1

In particular the total number of clusters per particle is
We assume that the connectivity is intensive,,\}m(c/N)
=0, and have introduced the notatiah=(¢?!,¢?, ...,
These results are independent of the distribution of cross-linii) for n-times-replicated variables. In the next step one

To(c)=1-c. (22

strengthsp(\). decouples different sites as shown in H&f.and performs a
To compute the density of eigenvalues we introduce théaddle-point approximation for large. This gives rise to a
resolvent self-consistent equation for a functig®(x),
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1
M]_:E

N 020 o Qi iy O N2 =d\ 2d
fdye['ﬂy +2g25) NG -2)A12 fOTp()\):_” (37)

(a?

| ! 2
M1=2c) <€

0”(-2¢ | "dnpn) —
0 f dyelioy?+2gt(2

and
(30)
o , : (5P,—4P) 1 8c®~6c°~5c+1
which in turn determines the resolvent according to My=— >—In - 7 P1
240c 1-2c 30c(1—2c)
dgo“(ze[in%zlag“(?o] 4c2—3¢c—1
. -—P, (38
G(Q)=lim — (31 24c(1—2c)?

n—o N f d’)‘(e[iﬂ;(2/2+g“(;<)]
with P, :=fgdAN""p(\). We are interested in the small ei-
agenvalues that are due to the geometry of the clusters and not
due to the appearance of weak links. Hence we confine our-
selves to distributions such that weak cross-links are unlikely

In the last step of the calculation one assumes a replic
symmetric solution for the saddle-point equation:

to occur. More precisely we require
2(x)=g" ith p= 2. 32
9 (0=gp) with p= /X x; (32 lnpoy| 1 .
N 2 (39

The limit n—0 can then be performed resulting in the fol- Mo

lowing nonlinear integral equation fog®(p) [cf. Egs.

(16,17 in Ref. [8]] The divergence of the momentdl; and M,, suggests a

Lifshitz tail of the density of states of the form

* BN _ 3\ k
g“(p)=20fO d\ p(x)exp{—gpz] D(y)oceXp{—(M ] y10, c<%, (40)
+2ic efzcjwd)\ p()\)deX)\pll(”\pX) since for positivex this ansatz implies for the inverse mo-
0 0 ments
N 1, M ,oc(1—2c) 31 3 41
X ex —?(p +X )+7x +g"*(x); (33 n*( c) . Clz (42)

Bray and Rodgers have given a heuristic argument in favor
with g(0)=2c. Herel () are the modified Bessel func- of the ansata40) with «=1/2. They argue that out of all
tions of the first kind. The solution of Eq33) yields the  clusters for givenn the linear one has the smallest eigen-
resolvent value, namely,ymin=yon 2. There is just one linear cluster

dr . for givenn, so that its contribution to the spectrum is
o] I o]
G(m:—f PN +5c| dppg?(p)  (39)
0 Clo

1
D= Z (2ce(2°))“5( y— %)wvﬁ’?. (42)

and the density of eigenvalues
Arbitrary finite clusters may be attached to the chain without
_ . [ yie altering the dependence of the smallest eigenvalue on the
Dol ) 2cm !IE) Im( ! JO dppg (p)% (35 length of the chain. If a finite cluster of mass is attached
to sitei of the linear chain, the smallest eigenvalueyijsi,

= yo/m;n2. Replacing
B. Moments and Lifshitz tails

If all inverse momentdV, of the density of nonzero ei- 2 nr
genvaluesM ,:=[5dyy "D(y), ne\, exist, one can derive — " 1
the following asymptotic expansion of the resolvent: mi~m= “1-2¢ (43)
" 2 Tn
=t 27 S g (36) )
=——+—+cC
Q fa®?  n=1 i leads t0ymin=vo(1—2c)/n?. The number of clusters con-

tributing to D(y) for small y is much larger if attachments
by expanding the denominator in E®5) in a geometric are taken into account: The probability of finding a chain of
series. As we show in Appendix A, the lowest moments ardengthn, regardless of attachments, is given bg)2 Hence
given explicitly by the density of eigenvalues is estimated as
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Oy — o 2

D"nziZ (20)“5( . M) g%(p)=2caexd —iz(Q)p?2], (46)
2¢ % n? wherez=2z(Q) is an arbitrary function of)=y+ie with
yo(1—2¢)3) 12 Im{z} <0 for >0, leads toG({))=—1+a/z. In the limit

~exp‘ —(0—) ) (44  Im{z}—0 each zeroy; of Re{z(y;)}=0 gives rise to ad

Y function in the spectrum,
Here, we have expanded Imj2-2c—1 for c sufficiently o(y—"i)
close to its critical value.,;;=1/2 to obtain the Lifshitz tail Do ?’):aEi |azl ay(y)|* (47)
near criticality. In Appendix A3 we derive rigorous upper
and lower bounds foD(y), which prove thatD(y) has Next, we construct an approximation to the integral equa-

indeed a Lifshitz tail of the fornD(y)~exd—+vh(c)/y].  tion (45) by successive iteration. We start with
We are unable to derive the dependenceéh@f) on cross-

link concentrationc, which is, however, suggested by the gg(p):=2c. (48)
lowest order moment&38) and(74).
In the following two subsections we shall discuss twoThe first step of the iteration gives
special choices fop(\). In the first case all cross-links are
of unit strength, giving rise to a point spectrum. In the sec- 0 i, I
ond case the strength of the cross-links fluctuates according ~ 91(p)=2cexg —5p|11-€ cfo dx Ji(x)
to p(\) =exp(—1/\)/\?. The integral equatioi33) simpli-

fies considerably for this distribution and allows for a solu- i X2 X
tion by iteration. Xexr{i(ﬂ_l)_ﬂ‘ 0 _) ] (49)
p P
C. Exact solution of the integral equation for uniform cross- i 0
link strengths 2c ex;{ ~50-1 pz) (50
For cross-links of unit strength, the integral equatids)
reduces to Eq(16) in Ref.[8], since the integral on the right-hand side can be calculated
i . exactly [16]. The spectrum consists of & function aty
g%(p)=2c ex;{ - EPZ) 1+ie’2cf dx ply(i px) =0, D{(y)=6(vy). The next step of the iteration gives
0
Q-1 Y LY PR
Xex;{ ( . )X2+gQ(X) ) gz(p)—ZCex;{ L )[1 e fo dx Jy(x)
| X2 X
=2c exp( - Epz) { 1-2c e*ZCJ dx Jy(x) X ex (Q 1) 5 +ot| — P (51
0
X ex i—(Q—l)x—2+ Q i) . (45) =2C€X[{-i—p2> 1—e‘2°fwdx.](x)
2 p? p 2 0 !
o k
The second equality follows from a substitutinn- px and X ex (Q 1)— 2 (ZC)
from the basic relation between the Bessel functions of the k=

first kind J, and the modified Bessel functiohs, in particu-
lar, 1,(x)=—iJ4(ix). B i kQ x2
To get some feeling for the spectrum of eigenvalues, we Xex 20—-1 .2 (52)
first consider the case of smail We then have predomi- P
nantly small clusters, i.e., single particles, dimers, trimers
etc. The connectivity matrix of a dimer has eigenvalugs the integrals appearing in E652) can be computed exactly,
=0\ ,=2. Alinear chain of three particles has elgenvalue%,iekjing
{0,1,3}, a linear chain of four particles has eigenvalues
{0,2,2+ \2,2— \/2}, and a star with three legs has eigenval- i
ues{0,1,4. These are the only trees up @(c®). Hence in Hp)= 202 al® e ;{— —Z(kz)pz) (53
this order the spectrum consists &ffunctions at the above 2
eigenvalues, with each cluster contributing to the weight of

by Taylor expansion of the exponential gf'(x/p). Again,

the & functions according to its frequency of occurrence. _(z). _e_ZC(ZC) @[ 14 1
Next we show thab functions in the spectrum correspond to k= ki otk 0O-1-kQ/(Q-1))°
Gaussian functiong®(p). The ansatz (54
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Note that3;_,a{®’=1. In this iteration, the spectrum is form. This observation enables us to write dofix-point
given by equations for the coefficien and the exponential prefac-
torsz
1_e72c *° - (2C)k71 o i1 )
Da(y)= 5 5('y)+k22e Zcma(y—k). afiiV=a and z{V=2z0. (61)

(59 As shown in Appendix B, these equations can be solved if
the indices on the left- and right-hand sides are matched by
mapping the sequencé,] that appears as index on the left-
) hand side onto a simple numhes =1, M* with some posi-
i I tive integer M. Afterwards, M is taken to infinity. In the
9 (p) 202 a() p{ a Ez(k)pz}’ (56 process,ga new structure of the coefficieatsndz gmerges:
each pair of coefficientsa(,z;) falls into one of infinitely

with 35_,al)=1. L is an arbitrary positive integer and will many “classes” of increasing complexity. The first three

be allowed to tend te> below. We insert the ansat6) into ~ classes are given by the following expressidtise upper
Eq. (45) and use a similar Taylor expansion as above tghdex denotes the classhe general form can be found in

Next, we consider a general ansatz gt of the form

obtain Appendix B:
o0 Q
i (2ca">> aj=e %, Zy=o—r, (62
op=zee =3, . 3 (I 24 e Eag
0~ L* -
i 1 al_e_ZC(ang)“ 21——9_nzg (63
xexpl — 5| It ————— p?| . n n T 0-1-ng’
Q-1-> I,zM
k=0 *
_ 1
(57) (2cak)' @ IZO '
a2 2cH 2 =
(i ’ () * :
When we now lel.—o, we get the expression “ k=0 “ 1
’ QO-1-> Izt

9i1(p)= 2c2 afj )" ex r{—gzéit”pz) (58) (4
Note that the expression for a higher class automatically con-
tains all of the lower classes as well if the Iower class
expressions are recursively inserted, e. gaaoo
—e 2(2cal)/1!=al. This remains true in the general
(590  case. For higher classes the indices become more compli-
cated, e.g., for class 3 it is necessary to U%I as index on

the left hand side. As a shorthand, however, it is convenient
and to use the notationl{) or justk even for the higher classes.

It is then understood th&titself may stand for a more com-
t1_q 4 1 60 plicated object like a nested sequence. See Appendix B for
) * o details.

Q-1-> 1,zM We mention the result tha™, the sum over alk from
k=0 classes 0 tan, is given by

with

~ (2cal)'x

k=0 Iy!

(|+l)

-2
i,y =e

z{]

We use the notationl ) to denote a whole sequence of non- m e cam—1 me1
negative integers, whill, (without parentheseslenotes the S ::{uE)} auy=¢e 1;[ e =exp—2c(1-s"" )},
kth element of the sequence. Out of all possible such se- : (65)
guences we only need those wittiigite number of nonzero

elements. This is becausal’—0 as k—=, and thus and

IT;_o(2ca’)'v/1, ! =0 if there were infinitely many nonzero
elements in ). The set of all sequences with a finite num-
ber of nonzero elements is denoted{ly)}. The summation
in Eq. (58) thus goes over a countable set and therefore

gi"1(p) s of the some functional form ag'(p). Itis easy to lim,, ...s"=1, as it should be. The quantity-Is™ is there-

see thatE{(, 212(iy"'=1 holds also for the next iteration. 0" 2 (easure for the quality of an approximation that only
Sincegy(p) is an expression of the form of E¢56), it goes up to clasm. We can conclude that for smallonly a
follows by induction that allgi*(p), i=2, are of the same few classes are sufficient whereas éoclose to} consider-

P=eg 2 (66)

As long asc<3, the corresponding fix-point equatios
=e 2¢(179 has a stable fixpoint as=1, which implies
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ably more are needed. For>3, the fix point becomes un- 10°
stable, indicating that the iteration no longer converges to the

full solution of the integral equation due to the appearance of
the infinite cluster. 102 +
Implications for the density of states
E 104
Making use of the solution just constructed, the resolvent & 10
can be written as
m 10°®
. ay
G(Q)=—1+1lm > —. (67)
m— oo k Zk
108
Here, inclusion ofa’s andz's from classes lower tham in 0 05 1 15 2 25 3 35 4
ay andzy' has been implied as explained above. Analogous Y
to Eq.(47), this results in the exact density of states FIG. 1. Numerical simulation of the density of states for
c=0.1.
. ) . . o
Dot 7)= lim >, akz —_—, (68)  mate scaling relation holds. This view will furthermore be
m—o K T |ozdlay(vi)l supported by the results of the numerical diagonalization of
i random matrices for different types of system.
that is, a sum of6 peaks located at the rootg; of the To conclude the discussion of the density of states for

respectivezy(y) with weight factorsay|(9z¢/dy) ()|~ uniform cross-link strengths, the spectrum from the iterative
It can be proved with Cauchy’s integration theorem appliedsolution of the integral equation is compared with results
to (ZETK))_l and Eq.(64) or the more general expression from from numerical diagonalization df (for details see Sec. IV
Appendix B that=;|(azf/dy)(yR)| *=1 holds for every below). Figure 1 shows the .numerically compu;ed ;pectrum
z". This property guarantees that the total weight of allfor c=0.1. Note that there is a peak @t=1, which is not
peaks in the spectrum is (tecall that the sum of al's is ~ Present in Eq(69). This ‘missing peak” can be found only
also 1. There is no continuous part of the spectrum, but thigh higher classes, e.g., i@, . =y(y—1)(y=3)/(®
would change foc>1 due to the appearance of an infinite —5¥°+6y*—1). Other roots that can easily be identified
cluster. with peaks in the numerical results are at 22 (stemming

It is impossible to find the roots of a" but classes 0 and from zZ,, ) or at 5/2=\5/2 (stemming fromz§,, ).
1 can be solved exactly. We deduce from B8R that the  Figure 2 shows a direct comparison between the same nu-
roots of z- are located aty,;=0 and y,,=n+1. The merical simulation and a few explicitly calculated peaks
weight factors are easily computed asnt{(1) for the peak from classes up to class 3. The agreement regarding the po-
at 0 andn/(n+1) for the peak ah+1. The density of ei- Sition of the peaks is excellent but some weight is still miss-

genva]ues inc|uding class 0 and 1 then reads Ing from some of the peaks. This Welght is eXpected to be
-1
eZCefzc_ * (2C672C)k 10
1 _ _
(69) 102 |

10° |

D)

Note that this is different from the result of the second itera-
tion, Eg. (55), although it contains the same peaks.

Another consequence of the exact solution of the integral
equation is that the density of states does show scaling 10§
behavior with respect ta, i.e., it cannot be written in the
form D(y)~f(y/v*(c)) with some typicaly*(c). This | | : |
follows from the fact that the positions of the peaks are given 10° 5 (’)'5 ] 15 ) 2'5’ 3 3'5’ 4’
by the roots of the’s, which are independent af and only ) ) ’ ‘
the weights of the peaks depend onThis can obviously Y
never result in an exact scaling form: if scaling were valid, @ FiG. 2. Comparison between the simulatisolid line9 and
small change ofy* would result in a small shift of the peak some selected peaks calculated from the exact solutiashed
positions, but they must stay fixed. It will be shown below jines) for c=0.1. The analytical peaks have been slightly shifted to
for fluctuating cross-link strengths that numerical solutionsthe right for better comparison, otherwise they would be indistin-
for the eigenvalue density indicate that not even an approxiguishable from the numerical peaks.
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found in higher classes and/or in differers which happen 0.4 - . -
to have a root at the same position.

D. Numerical integration for special p(\)

The integral equatior{33) simplifies considerably for a
special choice op(\), namely,

_ 1 1
p()\)—Fex -l (70)

implying P,=n! Inserting the ansatg"(p)=:fo(p?/2) into
Eq. (34) leads to the following representation:

G(Q)=—1+ %f:dxfg(x), (71

FIG. 3. DensityD(y) of nonzero eigenvalues for the mean-field
. . . . . network forp(\) given by Eq.(70) for different concentrations.
V_\Iherefn(x) 1S the_ solution of the ordinary differential equa- The lines are the analytical results., the results from the numeri-
tion (see Appendix A2 for details cal solution of Eq(77)] while the data from the numerical diago-

nalization are shown by the symbols.
fo(X)=—ixfH(x)+2cexp —2c+iQx+fo(x)},

9% (p)=2¢+2ipK,(V2ip)
fo(0)=2c. (72)
P
| | | +aice oK, (V21 p) | "dyl (i)
This allows one to write down the general term in the 0
asymptotic expansion o&(Q) for small (). Close to the

critical point the lowest order moments are explicitly given Xexp[% 7]2+99(77)]
by
Vo 1 | 1 X 1 23 +4ice*26p|1(@p)f d 7K. (\2i7)
Zac|M1m2c) 5 T2 (73 g
xexpl L 24 go (77
e A 1
5 13 ) 1 Xp 1"+ 97 ()
M,= 5T > +O((1-2¢)77), C—35,
15(1-2¢)° 60(1-2c) since in this representation the integrands do not depemd on
(74) and the numerical integration thus needs to be done only
once per iteration, resulting in time and memory require-
M 47 16 O((1—20) 4 ments only of the order of the number of integration grid
= —+ =+ —2C - , . . . .. .
3 2401—2¢)°  1051—2¢)° points. This allows for high precision computations of

9%(p), G(Q), andD(y). _ _
Figures 3 and 4 show the results for the density of eigen-
1 values from a numerical integration of E7) using a Pade
C— = (75) . . . - . o
approximation in order to extrapolat®@ =y+ie to €=0.
There are several noteworthy points to be seen in these fig-
and ures:
First, we expect to see Lifshitz tails fatl ¢, 0<c<1/2,
for asymptotically smally. Precisely at the critical point
5762 1159 .
= + D(y) goes to a constant as—0. For cross-link concentra-
64351—2c)° 7207201-2c)® tions close to the critical one, we expect to see a crossover
between an approximately constant region at intermediate
-7 1 to a Lifshitz tail at very smally. Since small values of are
+0((1-20)77), c¢—3, (76) y Sthaty. > ra
2 hard to access numerically, this crossover makes it difficult
to observe the Lifshitz tail, except possibly for smallFor
giving additional support to the conjecture about the Lifshitzintermediatec the data in Fig. 4 can be described approxi-

4

tail Eq. (40). mately by a straight line but with a slope different from
For a numerical evaluation @&(()) it is more convenient — 3. This property will be confirmed by the results from the
to rewrite Eq.(33) in the form numerical diagonalization presented below.
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25 LI - - - vergence of the static shear viscosit ~t~4 with
\\\ \ A:gl. y apft)
o0 L A \\\ Y — -In(y)2+0.3 | The absence of scaling in the density of states is also
' N\ \ =045 relevant for the stress relaxation function. The presence of
\\\ \ "7 c=038 more than one characteristic scale for the eigenvalues implies
=15 | ’ NN T o0 more than one characteristic time scale for the stress relax-
g ation function. As a consequence, the stress relaxation func-
= tion does not scale either. This point will be discussed further
E10 below in the context of numerical diagonalization of the con-
nectivity matrix. Attempts to scale data for the time depen-
o5 | dent stress relaxation function fdgee Fig. 14 beloy
IV. NUMERICAL DIAGONALIZATION
0.0 '

-8 -6 A. Numerical methods

In(y)

In this section the eigenvalue densiti2éy) of three dif-
FIG. 4. Double logarithm of the densify(y) of nonzero eigen- ferent types of random network are studied numerically:

values as a function of Ip for several concentrations mean-field (N”_:) networks as well as two- and three-

dimensional simple square/cubic grids. For the first case,

A d kabl int is that the densitv of stat cross-links are allowed for all pairsj of nodes while for the
second remarkablé point IS that the density of SIates agy o networks only cross-links between neighboring nodes
seen in Fig. 3 is clearly not suited to a scaling ansatz. Ther:

fhay appear. For the finite-dimensional grids we apply peri-
are (at least two different scales contained in the plot: the y appear n ! > grids we apply per

odic boundary conditions in all directions. The size of the
first is the drop-off lengthy°(c) which describes the scale on ! ), y N I ree 2

. ) o networks is denoted by, with N=L9 (d=2,3) for the
which D(y) goei 0 forsmaHyo, the other is the p?S't'?nnXOf finite-dimensional cases. For the numerical treatment, we
the maximum,y™®{c). While y” goes to 0 forc— 3, y™

consider random graphs with a fixed numbérof vertices,

evidently does not; these two features together are obviously, ha cross-link concentration és= M/N Every cross-link
incompatible with a scaling ansatz of the forb(y) . '

has the same probability of occurrence. For the implementa-
~f(y/v*(c)) with some typical* . This finding is in agree- D y b

. . ; . tion of the graphs on the computer, ttepA library [17] was
ment with the observation from the exact solution for uni- ,coq Network sizes up tdl=10000 (MF), N=3136 (

form cross-link strength where scaling was not possible ei-:2) andN=4096 (d=3) were studied. For each system

ther. Here, however, the statement is even stronger sincg, o \,, 1, 16 different realizations of the disorder were con-

evenl'an fapproxirr?ate scalin% relat?on is ruled (E:t Nfote thesidered(lOOO for the largest sizgsDifferent concentrations
peculiar feature that a second maximum appeaf3(if) for of the cross-links between 0 and the percolation threshold

small y at the percolation threshold=3. This is not an Cor Were treated, where,,(MF) = 1/2, cyi(d=2)=1, and
. . . . . . . crl 1 Crl 1 MCrnl 1
artifact and is confirmed by the numerical diagonalization a%cm(d=3)~0-7464[18]-

shown in the figure. It may even indicate the presence of a
third scale since the emergence of a maximum can already tfﬁ
suspected in the curves for smalter

We consider the same two cases regarding the strength of
e cross-links as above: Either all cross-links have the same
strengthA =1 or their strengths are distributed randomly
with the probability density given in Eq70). Numerically,
the random values for the strengths of the cross-links are
drawn using the inversion meth¢d9]. A random number

The characteristic features of the spectrum as discussgg drawn that is uniformly distributed if0,1]. Then the val-
above have important consequences for the stress relaxatiges of\ := — 1/Inr are distributed according 1@0). For test-
function. In particular, the Lifshitz tail in the spectrum gives ing purposes also some systems were studied where the
rise to an anomalous long time decay of the stress relaxatiogrengths were uniformly distributed in the intery@l5,1.5.
function in the sol phase for ati<c,,;; . The true asymptotic |n all cases no significant deviations of the measurable quan-
behavior ofD(y)~exd —vh(c)/y], which is proven rigor- tities for different distributions could be observed. The main
ously in Appendix A 3, impliesy(t) ~exd —(t/7*)?] with B difference is that for cross-links of unit strength the distribu-
=1/3. However, we are unable to estimate the timescal@on D(y) of the eigenvalues is dominated by a sumdf
needed to reach the asymptotic regime. For smaller timeseaks below the percolation threshold while for cross-links
the stress relaxation function is characterized by effectivef continuous strength the distributidd(y) is purely con-
exponents, just as the spectra in Fig. 4 can be fitted to Liftinuous(see below
shitz tails with effective exponents that depend on cross-link The numerical method works as follows. Random net-
concentratiorc. works are created, with constant or random cross-link

The divergence of the time scalé(e)~¢ ? is deter-  strengths as needed. Then, for each graph the connected
mined by the functiorh(c). The expansion of the resolvent components are determingd0]. For each connected com-
for small() suggestg= 3. At the critical point the density of ponent the connectivity matrix is calculated, which is a real
eigenvalues is constant as-0, implying a logarithmic di- symmetric matrix. Therefore, for determining its eigenvalues

E. Stress relaxation
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FIG. 5. DensityD(y) of nonzero eigenvalues for the mean-field  FIG. 6. Double logarithmic plot of-In[D()] for different con-
network at the percolation threshotd=0.5 from numerical diago-  centrationsc of the mean-field network. The line shows a function
nalization. The solid line is the analytical result, which is hardly —In()/2+ const(Lifshitz tail), which is the behavior predicted by
distinguishable from the result fod=10 000. The inset magnifies theory.
the regionye[0,0.4], where the numerical results for the largest
system sizé\ =10 000 are shown by circles. small in order to observe the asymptotic behavior of the

density of states for small eigenvalues.
the QR algorithm and the Householder mett@d] can be
applied. Next, the eigenvalues are sorted in increasing order. C. Results for finite-dimensional systems
Each connected component has one smallest eigenvalue O.

: : Next, we consider three-dimensional systems, which are
Because of numerical errors usually the smallest eigenvalu y

is not zero but quite small, depending on the distribution Orgeheved to des_,cnbe _real polymer networks more appropri-
a&tely. The density of eigenvalues for the case where all cross-

the strengths of the cross-links. Consequently, the Sma”eIl:nks have the same strength(A)=8(\ —1), is shown in

eigenvalue is assigned the value zero. Finally, the e|genva-.g. 7 for N=16° andc=0.2. As in the mean-field case, a

ues of all components are collected, sorted again, and stor . . . . o N
for further eva[I)uation for each realization of tlge network collection of 5-peaks is obtained. Since this kind of distribu-
" tion is more difficult to analyze, we turn again to the model

where the strengths of the bonds have the distribufi@).
Results for the largest system sipé=16° and different

First, we consider the densify(y) of nonzero eigenval- cross-link concentrations are shown in Fig. 8. Below the per-
ues for the mean-field network at the percolation thresholaolation transitionc;~0.7464 the distribution exhibits a
c=1/2. Data for the casp(\)= 8(\ — 1) have already been maximum and converges to O for small eigenvalues, similar
presented in Fig. 1. Here we consider the case where the

B. Results for the mean-field system

strengths of the cross-links are distributed according Eq. 10° : : :
(70). In Fig. 5 the resulting density is shown for different
system sizes together with the analytical redualbtained 00 [ T 43102 .
from the numerical solution of Eq77)]. It can be seen that
the sizeN= 10000 is already sufficient to reproduce the ana- 10" r T
lytical behavior for a large range of eigenvalues. In particu- .
lar, the “dip” near y=0.15 is validated by the numerical = 1
data(see inset Because of the finite system sizes, arbitrarily &
small eigenvalues cannot be found; thus the numerics dis- 10
agree with the analytical result in that region. Nevertheless, 102
the analytical result lim_,D(y)>0 can indeed be con-
firmed by extrapolating the numerical data to infinite system 107
size.
The spectrunD (y) for different cross-link concentrations

c is presented in Fig. 3. Once more, the numerical (
=10000) and the analytical results agree very well. For
small y, the logarithm of the spectrum should behave as giG, 7. DensityD(y) of nonzero eigenvalues for the cubic net-
~—y V2 (Lifshitz tail). Figure 6 shows the logarithm of work with all bonds having the same strength=1 (c=0.2N
D(y) in a double logarithmic plot in complete analogy to =16°%. Similar to the case of the mean-field network, a sumsof
Fig. 4. Presumably, the system sizeMf 10 000 is still too  peaks with strongly varying heights is obtained.
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) ) ) FIG. 9. Finite-size scaling plot of the viscosity(c,L) for the
FIG. 8. DensityD(y) of nonzero eigenvalues for the cubic net- three-dimensional grid. A scaling behavior gfc,L) =L ¥"7[(c

work with p(\) given by Eq.(70) for different concentrations. ¢ )LY"] is assumed. Using=0.88 andk=0.75 the points for

The inset shows the finite-size dependence at the percolation thresD-: 10,13,16,20 collapse onto one curve near the critical concentra-
old for small eigenvalues. e

tion.

to the mean-ﬂe_ld case. At the transmdh(y) d|_verges aS  of finite-size scaling enables us to circumvent the problems
y—0 (see also_ insgtBelow we W'.“ sho_w that this behaV|or. which are posed by the lack of very small eigenvalues of
changes the divergence of the viscosity near the percolaﬂqnnite graphs

threshold. The eigenvalue densities for the two-dimensional| By plotting 7LX” against ¢—c.;)LY" with correct pa-
network look qualitatively simi]ar and are thefefof e Ot ametersy and k the data points Cfrgr different system sizes
shown here. The true asymptotic bghawor}aso is diffi- and c~c;; should collapse onto a single curve. We have
cult to access, ]ugt as in the mean-field case. taken the values(d=2)=4/3 andv(d=3)=0.88 from the
) The changes in the spectrum as C(_)mpareq to the_ mea.ﬂferature[lS] and adjusted/v. The best collapse neag,
field case al_so affect ;he stress relaxation, which we mves,tl\;\’as obtained withk(d=2)=1.19 andk(d=3)=0.75. The
gate next. First, the viscosity given by results are presented in Figs. 8=3) and 10 =2). The
_ =D(y) values we obtained for the different distributions of the
n:[l—TO(c)]f —dy cross-link strengths agree within the error bars.
°o Y The value ofk for two dimensions agrees very well with
clfpe resultk~1.17 found previously by Broderix et glioj,
using the high precision simulations of Gingold et [d2].

(78)

is considered. Here, irrelevant prefactors have been omitt
for simplicity; see Eq(18) for the complete expression. In
the numerical calculation we compute

N
! ! (79 0.15 §
== — A5 d=2 1
7 N ¥i>0 7i °
oL=10 R
for each realization and subsequently average over different sl=14 °
P [o>] —
realizations of the disorder to obtain. Whereas for the s 01 r :t:;g @
mean-field network the viscosity diverges logarithmically for = alo 40 »
C—Cgit, for finite-dimensional systems a divergengéc) E v L=56
~(cgit—C) ¥ is expected. The reason for the different diver- 0.05 - . B .
gences is the manner in whi&( y) behaves for smaly at v, °
the percolation threshold: for the mean-field network, . 8g °
lim,_oD(y) is finite, but for the finite-dimensional grids ol~ v g T f oo 1
D(y) diverges asy—0. The critical exponenk of the vis- _1'5 _1‘0 _'5 ('J

cosity can be determined from (1)L°

n(c,L)=L """l (c—ce)L "], (80) FIG. 10. Finite-size scaling plot of the viscosig{c,L) for the

. . . . two-dimensional grid. A scaling behavior of(c,L)=L " "3[(c
similar to the usual finite-size scaling relatiof22] for the —co)L Y] is assumed. Using=4/3 andk=1.19 the points for

percolation transition. _Heré is a universal function andis | =10,14,20,28,40,56 collapse onto one curve near the critical con-
the exponent describing the divergence of the correlatiogentration. Since finite systems are treated, the maximug(of is
length when approaching the percolation transition. The useelow the critical concentratioo,;=1 of the infinite lattice.
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The result for the three-dimensional cake=(0.75)is slightly 10’ . . .
worse in comparison witk~0.71[10,12. The reason is that o d=3
here only small system sizes up to*2@uld be treated due 10 —— A=0.830(2) 1
to the fact that all eigenvalues are calculated. If one is only = mean field
interested irk, it is computationally less expensive to com- A=1.029(5)
pute the Moore-Penrose inverse of the connectivity matrix. R
Thereby one might be able to study system sizes as large as
those used in Refl12]. For the realizations treated here, we 107 .
have checked other characteristic results concerning the per-
colation transition, like the critical exponemnt, which de- 10° |
scribes the behavior of the cluster-size distribution. The . °§:§'741(2)
finite-size scaling plots have a poor quality for this quantity, 10° L 0T L .
too, resulting in a rather low precision of the exponent val- 10° 100 10F 10" 10"
ues. Additionally, we have observed a systematic drift in our 10 o pps
results: By including even smaller system sizes, the scaling t
plot results ink=0.89, which differs even more from the
value obtained before. Consequently, we believe that larger FIG. 11. Stress relaxation functiop(t) at the the critical con-
system sizes are needed, to obtain a more reliable resudt forcentrationc=c;; for the three types of model considered here, with
via numerical diagonalization of random connectivity matri- continuously distributed strengths of the cross—_links in all three
ces. cases. Shown are the results for the largest sizes that could be
Next, the behavior of the stress relaxation functiagain treated with sufficient accuracy. For the part of the long-time be-

omitting irrelevant prefactors and using dimensionless timd'@vior which is accessible to the numerical simulationsy(&)
2dt/§agﬂt) P 9 ~t~ behavior is visible. From fitting we obtait=1.029 (mean

field), A=0.830(2) @=3), andA=0.741(2) @=2).

0

o The stress relaxation functiop(t) for different concen-
X(t):[l_To(C)]fO D(y)exp(—yt)dy (81)  trationsc of the cross-links is shown in Figs. 1@ean field
and 13 @=3). In both cases we find exponential decay for
the longest times due to finite system size. For intermediate
was investigated; see E(L7) for the complete expression. times a stretched exponential behavigt) ~ exd — (t/7)?] is
The functions were obtained by first calculatibfy) and  yjsible. At least for finite system sizes the expongrgeems
then numerically integrating it. It would take too much time tg pe nonuniversal; we find values ranging frggw: 0.5 for
on the computer to first calculajgt) for each realization by ~ small cross-link concentrations down g=0.2 close to the
directly summing up the contributions and then average ovepercolation threshold. We suspect that the accessible times
the disorder. Here, we have investigated systems with coryre too short to see the true asymptotic behavior, which at
tinuously distributed cross-link strengths because they resujgast in mean-field theory is known to be a stretched expo-
in continuous eigenvalue densities where it is easier to obtaifential with exponenB= 1/3, resulting from the Lifshitz tail

stable numerical data. _ in the density of states. For small timgét) decreases like
In Fig. 11 the numerical results for the mean-field net-t-2 gnqgy(0)=1 by definition.

work, thed=2 and thed=3 models for the largest sizes

(c=cqy) are shown. As mentioned before, the numerical 1000 - - - .
simulations are restricted to finite sizes of the networks and o°
to a finite number of realizations of the disorder. Therefore, ©¢=0.25  mean field &°
the eigenvalue densitid3(y) always have a smallest eigen-
value yi, with D(y)=0 for y<vy,,. Consequently, the
long-time behavior is dominated by an exponential decrease
exp(— ymint), irrespective of the true form of(t). This re-
sults in a negative curvature in the double-logarithmic plot
for long times. Thus, in the numerical results, the asymptotic
form of the relaxation function is visible only for intermedi-
ate times(see Fig. 11 At c=c; a x(t)~t 2 behavior is
expected. By fitting we obtaid\ =1.029(5) (mean field, 9 g
A=0.830(2) @d=3), andA=0.741(2) @=2). The result . . . .
for the mean-field case is known exactly to he=1. The 10
discrepancy is again due to the finite sizes of the networks:

Indeed, we have observed that for smaller networks a value |G, 12. Rescaled stress relaxation functiefn[x()t] as a
of the exponent is obtained that is even larger. So the resufinction of the time for the mean-field networld € 1.029) with
A=1 seems to be confirmed. The value for the threedifferent concentrations of the cross-links. The straight lines cor-

dimensional grid is compatible with the large range of resultsespond to stretched exponentials with expongsts0.332 and
obtained in experimen{s]. B=1.

100

—In[x (1]

10
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For finite-dimensional systems, the quality of the scaling-
plot is similar. Therefore, it is not possible to make a reliable
estimate for the dynamical exponenin that case.

100 V. CONCLUSIONS

Within our model, the dynamics of a cross-linked polymer
melt is determined completely by the eigenvalue and eigen-
vector spectrum of the connectivity matrx In this paper
we have focused on some properties that are determined by
the eigenvalues alonée.g., the stress relaxation functjon
since the eigenvectors are hard to obtain. We have used three
different methods to examine the eigenvalue spectrum: first,
the construction of an exact solution for the averaged eigen-
value density for a fixed cross-link strength, second, a very

FIG. 13. Rescaled stress relaxation functiein[x(t)t*] as a  Precise numerical solution for the case of varying cross-link
function of the time for the three-dimensional networld ( Strengths, and third, a numerical diagonalization of random
=0.830) with different concentrations of the cross-links. The connectivity matrices.
straight lines correspond to stretched exponentials with exponents The first method allowed for some exact results regarding
B=0.386 and3=1. the eigenvalue spectrum. It could be shown that the eigen-

value spectrum consists of a very complicated but countable

Moreover, this variation of the exponest makes it im- ~ Set of § peaks, some of which could be calculated and com-
possible to observe a scaling fompit) ~t ~2g(t/7), wherer ~ Pared with results from numerical diagonalization. Further-
is a typical time scale that diverges like- (c.;—c) “?when  More, we showed that the eigenvalue density does not show
approaching the percolation threshold. For the mean-fiel§€xact scaling behavior. _ _
network, the expectations from the Lifshitz tails are3 and The second model of fluctuating cross-link strengths has
A=1, while g(t) is the stretched exponential function, but the advantage that the eigenvalue spectrum becomes a con-
we have already mentioned that there seems to be no scalif§uous function instead of an inscrutable sumépeaks.
possible due to the existence of more than one scale. In Figdditionally, it allowed for a fast numerical integration
14 a scaling plot ofy(t) is shown.y(t)t® is plotted against Scheme. From thesg ngmer!cal solupons it could be inferred
tX (Cqrii— C)? for mean-field networks of different concentra- that the expected Lifshitz-tail behavior for smallseems to
tions c. We have used only the regions below the finite-sizeSet in only for extremely smaly, smaller than is accessible
asymptotic behaviorg=1). It can be seen that the quality numerically. For this reason, the stress relaxation function
of the collapse is rather bad, explained by the variatiop of d0€S not show a stretched exponential form with exponent
with ¢. One might think that near the transitian-c, the ~ B=3 Within the accessible time window. Instead, for the
scaling may be better. But there the collapse is even wors@mes that could be reached, there seems to be a regime
(not shown, because even larger systems are necessary ¥here an apparent stretched exponential with a cross-link
reach the asymptotic regime for the small eigenvalues, agoncentration-dependent and thus nonunivergals ob-
explained before. served. Furthermore, in numerical evaluations of the eigen-
value spectrum again scaling could not be observed, not even

—In[x (1]

10

10’ 10° 10 10 10

, , , , : approximately, since at least two, possibly three or more,
SR ] different y scales with different dependence could be iden-
107 tified. As a consequence, the stress relaxation function does
not scale either.
. 9 i The third method, numerical diagonalization, confirmed
10 .o 042 % all results obtained so far very well. In particular it showed
© - =02 ] that the stress relaxation shows stretched exponential behav-
= 10° s Gc=025 8 ior with a concentration-dependent exponefit and it
i <c=03 "i k showed the failure of scaling of the stress relaxation func-
10° v ¢=0.38 % tion. It confirmed, however, the experimental findings that at
»c=04 % the critical concentration the stress relaxation function de-
i +€=045 & cays algebraically with exponent. For the mean-field
107 model, both theory and numerics yield the expon&ntl.
10'_3 10'_2 10'_1 1(')0 1('), Furthermore, numerical diagonalization allows for go_ing be-
te-c,,)° yond the mean-field approach. Results were obtained for

connectivity matrices on two- and three-dimensional cubic

FIG. 14. Scaling plot for the stress relaxatiptt)t® as a func-  lattices. Unlike the mean-field case, the density of eigenval-
tion of t(c.—c)? for the mean-field networkN=10%, randomly ~ ues now diverges at the critical concentratiomas 0, and

distributed strengths of cross-linkaith the valuesA =1,z=3. consequently the viscosity shows a power law divergence as

021404-14
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opposed to a logarithmic divergence as seen in the meanvhich is of course equivalent to the integral equati{88),
field case. The critical exponent for the viscosity is found tobut much better suited for a low frequency expansion.
bek~1.19 d=2) andk~0.75 (d=3). The exponenA is To that end we rescale variables accordingxte\Qp
found to beA~0.74 ([d=2) andA~0.83 (d=3). These and ¥%(x)=g%(x/\). The self-consistent equation then
results are comparable to the experimental findifsg® the reads

Introduction. If dynamical scaling, Eq(1), holds, the criti-

cal exponentz is determined by the scaling relatidn=(z o e [ Q [ d
~Kk)/z, which givesz~4, also in good agreement with ex- W(x)=2ce fo dAp(A)exp S XX
periments.
The Rouse model has some limitations: Excluded volume i ) 0
effects, hydrodynamic interactions, and entanglement are xexp 5 X+ WE(X) . (Ad)

naturally beyond its scope. Hence we consider our work as a

first step toward a quantitative analysis of stress relaxation ifve look for a solution in terms of a power series(i
polymer gels and are presently working on extensions of the

dynamic model to include hydrodynamic as well as excluded 0 “ ,
volume interactions. v (X):J_ZO (Q)W(%). (A5)
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APPENDIX A: LOW FREQUENCY EXPANSION W) i
X)=2cexp —2c)exp =x“+W¥,(X A7
OF THE RESOLVENT o(X)=2cexp—2c)e P(z of )), (A7)

1. Generalp(A) which is solved by

The low frequency expansion is derived from an alterna-
tive form of the integral equatio33). We start from Eq.
(30) and recall an integral representation of theere\w denotes the principal branch of Lambents func-

n-dimensional Laplaciarisee also EQs(3.49—(3.5)) in  iion defined as the solution of
Ref. [13]] ’

Wo(X)=—W(—2c exp —2c)exp(ix?/2)).  (A8)

W(x)exg W(x)]=x. (A9)

dy x=9?[, -
f—z Q nlzexp{ o0 f(lyl) From Eq. (A7) one derives the following property of the
(27Q) lowest order solution:
Q( > n-1d )] ix W
=exp 5| —5+—— 5| {f(p) (A1) = XF00)

We use this representation in the numerator of @) and which allows for an exact computation of the integral

take the limitn— 0. To evaluate the denominator of E§0) % 17> d
we observe that if dXX\I’O(X)I——f dx—[1—¥y(x)]>=2c(c—1).
0 2 0 dx
(A11)
rI]'Lnof dxfo([X) =fo(0)+ O(). (A2) The next two terms are given by
. 1 P,[ d? d
Both steps taken together lead to the following self- Pi(X)= | ——— —— | ¥(x), (Al2)
consistent equation fag(p): 1-Wo(x) 2i | dx2 xdx
2 2
- L(# B T I VS
i, > d
><exp[7p +g (p)], (A3) X 2 Xdx Wo(x). (AL13)
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The integralsfdxx¥;(x) can be performed like EqA11), 1 X

using the properties of Lambert® function. The computa- Fn(y) = N E TrO(y—T))

tions, however, become increasingly tedious, so that higher k=1

order terms have been computed only for the special distri- K 1 X

bution p(\) (see below. =5 k21 T(1-E5O(y-Ty)], (A18)

2. Specialp(n . - .
pecialp(a) whereT ', is the connectivity matrix of thith cluster andEX

We start from Eq.(A3) and introduce the abbreviation s the projector on the null space Bf,. In the macroscopic
D,:=d’/dp®—d/pdp. For the special choicep(\) |imit N—o, this yields
=(1/\?)exp(—1/\), one can perform the average oy )

analytically, .
d ( . . F(y)=(1-¢)0(y)+ El To(T(1—EQ) O (y—T(7,))])

d) 1+iD /2 i "
N e o

due to self-averaging. The brackét--) means averaging
(Al4)  Over the set of all numbered tre¢%,} of size n of which
' there aren" 2. T'(7;,) denotes the connectivity matrix corre-

] ) ] ] S ) sponding to the tre&,. The average number of trees of size
The resulting differential equation simplifies, if we introduce n her vertex is denoted by, and is given by[15]

the functionf o (p%/2):=g"(p),

iD,\ ! iQ
1+ Tp) eX47p2+ g“(p)

n—2
fo(p?12)+ip?/2f4(p2I2)=2c exp —2¢c)exd iQp?/2 == (2ce %)= ;n—s/ze—nh(c)—f(n)/n
2cn! 2cy2m

+fa(p?/2)]. (A15) (A20)

Introducing the new variabbe= p?/2 leads to the differential according to Stirling’s formula witth(c)=2c—1—In(2c)

Eq. (72) quoted in the main part of the paper. For the low znd some functiori(n) with 0<f(n)<1.

frequency expansion it is convenient to introduce yet another The smallest nonzero eigenvalue B{7,) is certainly
variable,y=(1x, in terms of which the differential equation greater than or equal to the smallest nonzero eigenvalue of

for ho(2x):=fo(x) reads the linear cluster witm vertices, which is proportional to
B ” . niz, i.e.,
ho(y) —iyQhg(y)=2cexp(—2c)exdiy +hq(y)].
(A16) .
The ansathq(y) =37 o(Q)ih;(y) then yields T(T)=— (A21)

" (except for the zero eigenvaluaith somea independent of

Mn(y) = iyRn-2(Y) =ho(Y) 77 = o n. This results in
- _ T (1-Ep)@(y—T(Ty))]<(n—-1)0(y—aln?)
xexp( > (nvhj(y)) (A22)
=1 Q=0
a1y
The_ Ieft hand side is linear ih,(y), so that Eq.(A17) is F(y)<l-c+ E (n—1)r, for y>0. (A23)
easily iterated. n=\aly

3. Proof of the existence of a Lifshitz tail inD(y) For y—0, the sum can be approximated by an integral,

The aim of this Appendix is to prove that the density of 1 o
eigenvaluesD(y) shows a Lifshitz-tail behavior fory—0 F(y)sl-c+ j n~ 3% ~nh() (A24)
andc<1/2. For the proof, it is convenient to make use of the 2¢\2m ) vary
eigenvalue distribution functioR(y):=/7?_.dy'D(y’). This

can be done without loss of generality becaude(if) has a ~1— c+—1 Y " exp —h(c) 2 "
Lifshitz tail, so doesD (7). It will be shown thatF () lies 2ch(c)\2m\@ y '
between two bounds which, taken together, assert the Lif- (A25)

shitz behavior.

For a given realization of a system wiftli vertices(or  This is the lower bound foF (7).
polymers, the corresponding () can be written, using a For the upper bound, EGA19) will be used again. Ex-
decomposition into th& clusters of the realization, plicitly, one has fory>0
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121 or, even stronger,
F(y)=1—-c+— >, —(2ce )"
) 2c n; nr ) Jah(c)=<—lim y*2In[F(y)—1+c]<\a[h(c)+1],
'yﬂo
A32
x> TH(1-E)O(y-T(T,)]  (A26) o o _ (432
Tn} which is the sought-for Lifshitz-tail behavior.
1 &1
21—C+2— z —'(ZCE_ZC)n APPENDIX B: DETAILS OF THE EXACT SOLUTION OF
Cn=1 THE INTEGRAL EQUATION
X{;} TH(1— EB)@)(V_F(En))], (A27) 1. Solution of the integral equation
n

It is not obvious how to solve the fix-point equations 61,
where the inner sum has been restricted to the séheér because the coefficients of thth iteration are labeled by an
numbered tree§,}. There aren!/2 such linear trees, such index, and a subsequent iteration gives rise to coefficients
that that are labeled by a sequendg) ( We therefore try to map
the sequencel() that appears as index onto a number by
writing n=3y_,l,M¥ with someM e N. For this to be a
one-to-one map, we need to restrict gllto be <M. This
restriction will be removed later when we |8 —o0. The

1 (e ]
F(y)=1-cty- 2 e MO T (1-Eje(y
n=2

—T(Ln))]. (A28) sequencel{) can be reconstructed fromby writing n in the
Next, the trace, which is a sum of non-negative terms, isnumb’\(/?r system of bas#l. Let this be indicated byl
estimated by just one of the terms. In particular[(Ir = (N)i -

—EDO(y-T(£))]=0(y—a/n?), corresponding to the The fix-point equations can now be written down as
smallest eigenvalue of,,. This finally gives “ (2ca )(n)ﬁ"
K

1 a,=e *° — (B1)
F(y)=1-c+ ET e nh©+1] (A29) k=0 (n)y!
n=yaly
1 a2 z.=1+ ! (B2)
~l-C+————=exp —|—| [1+h(c)] n > :
2c[1+h(c)] p[ (y) ] o M
(A30) 0-1 kZO (n)k Zy

for the lower bound.

. The equations foa,, can be solved independently from those
The upper and the lower bound together imply

for z,. We start witha,,. Successively solving the system of
In|In[F(y)—1+c]| 1 equationgB1) by inspection gives

== (A31)

y—0 [Iny] 2 ag=e %, (B3)

[, (2cay)"
e*ZCT for 1<n<M (B4)
M-1 M
(2cay) Mk
2] —————for M=sn<mMM
an={ k=0 (n)\1 (89
M
M-1 M= (208K 4 Mkt M-tk ) Mot Mk
e 2 Sl m s for MM<n<mMM", (B6)
ko=0 kpm-1=0 (n)k0+Mk1-~-!

and so on. The coefficiemt, is obviously independent of all a%=@2¢ (B7)
other a,. This property will be called “class 0.” 0 '
aq, . ..,ay_1 depend only ora,: this will be termed “class L _ZC(Zce—ZC)n
1.” Analogously,ay, , . . . ,aym_; are in class 2 as they de- an= -y =L (B8)

pend only ona’s from classes 0 and 1.
Now we can letM tend to infinity. Classes 0 and 1 are If we drop the constrainh=1, Eq.(B8) automatically con-
simple (the upper index now denotes the class tains class 0.
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For the higher classes, as we are now considehhg

— oo, indexing via a numben is no longer possible. Instead,

PHYSICAL REVIEW B4 021404

2 |ka

(70)=0. (B16)

for class 2, we have to revert to using a finite sequence as
index. For class 3, even this is not sufficient and a nested@his is possible in some special cases, e.g.,fge1 in

sequencel(k_)) is needed:

a(| 72CH ak)lk

————, lengthof(l,)>1, (B9)

2cad )

e ( a(ki))
!

If the constraint[length of (,)>1] is dropped and if the

3 _

explicit expressions for tha from the lower classes are re-

class 2. Sincel(1)=1, it follows that Eq.(B16) is satisfied
if and only if exactly one entry ofl{) equals 1 whereas all
the others are 0. Adding up all of the weights yields
e 2 (2ce —1)e*® “+1] as the total weight ofé(y
—1) from class 2.

The z?ﬂk) have several noteworthy properties, most of
which are easy to prove by induction owarand are there-
fore listed below without proof.

(1) z(I B is a rational function ofy with integer coeffi-

cursively inserted, all classes up to class 2 are contained igients.

one formula, Eq(B9). An analogous statement holds for Eq.

(B10).
In general, for classn, the index will be of the form
(I ) with m nesting levels. The general result is thus
()

(2ca(”,‘(f‘(1v NECH

(B11)

With the same reasoning as above we can calculate the

Z,. We find the same classes, and the results are

o__ @ B12
Z=q-1 (B12
Q-—nZ
A% (B13)
Q-1-nz’
2 20
1-2 le
Q- L yzZh 't
0oy Hw) )
2 )= (B15)
T 0-1- X g LS 1)

(e )b )

2. Properties of the solution

(2) The degree of the numerator is the same as that of the
denominator.

(3) The coefficient of the highest power is 1 in both nu-
merator and denominator.

(4) z?,“k) is a strictly monotonically decreasing function
(except at its poles

(5) All roots and poles ofz{?k) are located on the non-
negative real axis.
(6) z?l“k) has exactly as many poles as roots. Roots and

poles alternate, starting with a root at 0.

(7) There is exactly one more root zj’,‘k) than there are
poles in=;_ol,zit

(8) The sumz; |(az{?k)/ay)(y[ﬁ‘k)i)|*l over all roots«y?,‘k)i
of z['l‘k) equals 1. As stated in the text, this can be proved

using Cauchy'’s integration theorem.

Consider now some??k) and choosel{) such that only
thenth entry is nonzero. Then we have

-1
'}’_Inz:'.n
m —
2%,..., OO = Ty Ty m (B17)
n

Between two of its polesgsee the list of properties aboye
zZ"1is a continuous function that maps one to one onto the

real numbers; therefore there exists{%in this interval such
that Z?I] )(y[“)—o Moreover, when,— %, the y,m converge

to the rooty; * of z7~* in this interval. Smcezm Lis

monotonically decreasingy" <an L. This implies that for
every peak in the spectrum there are infinitely many other
peaks to the left of it in any arbitrarily small interval around
this peak. This also applies recursively for each of these

If one asks for the total weight of a particular peak at, saySatellite peaks. Only the peak at 0 is different: as stated in the
somey, (up to classm), one has to find all finite solutions list above, all roots ofz(j, are =0 and thus there are no

(1) of the diophantic equation

satellite peaks 0b(y).
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