
PHYSICAL REVIEW E, VOLUME 64, 021404
Stress relaxation of near-critical gels
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The time-dependent stress relaxation for a Rouse model of a cross-linked polymer melt is completely
determined by the spectrum of eigenvalues of the connectivity matrix. The latter has been computed analyti-
cally for a mean-field distribution of cross-links. It shows a Lifshitz tail for small eigenvalues and all concen-
trations below the percolation threshold, giving rise to a stretched exponential decay of the stress relaxation
function in the sol phase. At the critical point the density of states is finite for small eigenvalues, resulting in
a logarithmic divergence of the viscosity and an algebraic decay of the stress relaxation function. Numerical
diagonalization of the connectivity matrix supports the analytical findings and has furthermore been applied to
cluster statistics corresponding to random bond percolation in two and three dimensions.
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I. INTRODUCTION

The most striking observation in near-critical gels is t
anomalous stress relaxation@1# that precedes the transform
tion of the viscous fluid into an elastic amorphous solid, i
the gelation transition. Here, polymer systems are con
ered, where the viscoelastic behavior is controlled by
concentrationc of cross-links connecting monomers of di
ferent molecules. At a critical concentrationccrit the gelation
transition occurs. Viscoelastic studies by several groups h
revealed the following characteristic features of stress re
ation.~1! In the sol phase, well below the gelation transitio
one observes a stretched exponential decay of the stres
laxation functionx(t);exp2(t/t* )b. ~2! The time scalet*
;e2z diverges as the critical point is approached. Heree
5(ccrit2c)/ccrit denotes the distance from the critical poin
~3! The viscosityh, which is given as the integral over th
stress relaxation function, diverges ash;e2k as the critical
point is approached.~4! At the critical point, stress relaxatio
is algebraic in time:x(t);t2D.

Whereas the stretched exponential decay is characte
of the sol phase and holds for all cross-link concentrati
c,ccrit , the last three observations refer to critical behav
as the gel point is approached. If dynamic scaling ho
these findings can be cast in a scaling ansatz for the s
relaxation functionx(e,t), which depends on time and dis
tance from the critical pointe,

x~c,t !5ez2kg„t/t* ~e!… ~1!

with t* ;e2z. Given a certain distancee from the gel point,
one expects to see a crossover from an algebraic deca
intermediate times to a stretched exponential decay
asymptotically large times. The scaling ansatz impliesD
5(z2k)/z. Dynamic scaling as implied by Eq.~1! is well
confirmed experimentally@2# for the intermediate time re
gime wherex(t) decays like a power law. However, th
values for the exponents scatter considerably. Martinet al.
@3# and Adolf and Martin@2# find D50.760.05 in agreemen
with the valueD50.760.02 of Durandet al. @4#, whereas
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Winter and co-workers@5# observe a wide range of expone
values 0.2<D<0.9, depending on molecular weight and st
ichiometry. The experimental support for a univers
stretched exponential law is weak. Whereas Martinet al.
confirm the stretched exponential decay and quoteb'0.4
@3#, other studies reveal nonuniversal exponentsb. The di-
vergence of the time scalet* ;e2z in the scaling function
was determined in viscoelastic measurements asz53.9
60.2 @3,2# and deduced from static measurements of
shear modulus asz54.060.6 @6#. The experimental values
for k, the critical exponent of the viscosity, vary in the ran
0.7<k<1.4. The origin of the scatter in the experimen
data is not clear. One possible explanation is the size of
critical region, which is known to depend on the degree
polymerization. Hence experiments with different samp
have to cope with different sizes of the critical region a
possibly strong crossover effects.

In this paper we study the simplest dynamic mode
Rouse dynamics—in the presence of a time-dependent s
flow by means of analytical calculations and numerical sim
lations. Within this model, the frequency-dependent str
relaxation is completely determined by the spectral prop
ties of the connectivity matrixG, which specifies which
monomers are cross-linked. As a function of the total co
centration of cross-linksc, one observes in general a perc
lation transition at a critical concentrationccrit , such that for
c,ccrit no macroscopic clusters of connected particles ex
whereas forc.ccrit the system percolates. In the context
gelation the fraction of sites in the macroscopic cluster
been identified with the gel fraction and the percolation tra
sition has been shown to mark the onset of solidification@7#.

The connectivity matrixG is a positive semidefinite, ran
dom matrix, which has been studied in various contexts, e
diluted ferromagnets, diffusion in sparsely connected spa
@8#, anomalous relaxation in glassy systems, and localiza
@9#. In all cases the system consists ofN vertices~monomers
in the context of gelation! which are connected bycN edges
~cross-links!. A given realization of the connectivity matrix
can be decomposed into connected components or clus
Each cluster has one zero eigenvalue that describes the
fusive motion of the center of mass of the cluster. The
maining nonzero eigenvalues determine the stress relaxa
function and are discussed in this paper. In the simplest c
©2001 The American Physical Society04-1
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~mean field! one chooses the edges independently out of
possibleN(N21)/2 edges. The density of eigenvalues c
be computed analytically for the above simple distributi
and has been discussed in Refs.@8,9# in the percolating re-
gime, i.e., c>ccrit . In this paper we focus on the rang
c<ccrit , which corresponds to the sol phase and the crit
point. For cross-links of unit strength the spectrum ofG is
shown to consist ofd functions only, whereas it is smoot
for fluctuating cross-link strength. In both cases the spect
goes to zero for small eigenvalues as a Lifshitz singula
for all c,ccrit . The spectrum determines the time-depend
stress relaxation functionx(t). All characteristic features o
x(t) as discussed in the first paragraph above are reprod
by the mean-field model. The stretched exponential decay
long times can be traced back to the Lifshitz singularity
the spectrum for small eigenvalues. At the critical point,
spectrum approaches a finite value for small eigenvalu
giving rise to a logarithmic divergence of the static she
viscosity in agreement with previous studies. In mean-fi
theory the exponents are found to beb51/3,D51, and
z53. These results have been confirmed by numerical dia
nalization of the connectivity matrixG.

The last approach can be extended to finite-dimensio
connectivities, corresponding to two- and three-dimensio
percolation. The stress relaxation function is found to de
algebraically at the critical point, i.e.,x(t);t2D with
D'0.74 (d52) andD'0.83 (d53). In the sol phase one
observes a crossover from algebraic decay at intermed
times to stretched exponential decay at long times. The
merically determined spectra can also be used to compute
static shear viscosity. We find for the critical expone
k'1.19 (d52) and k50.75 (d53). These values are in
reasonable agreement with a scaling relation@10# based on
an exact correspondence between the viscosity and the r
tance of a random resistor network. Using high precis
data@11,12# for the conductivity exponent of the latter, on
obtainsk'1.17 (d52) andk'0.71 (d53).

The paper is organized as follows. In the following se
tion ~Sec. II! we introduce the dynamic model and the o
servables that we want to discuss and that can be relate
the spectrum of eigenvalues of the connectivity matrix.
Sec. III we present the analytical calculations for the me
field distribution of cross-links. We briefly review the der
vation of a self-consistent equation for the spectrum, wh
was previously given by Bray and Rodgers@8#. We then go
on to discuss the appearance of Lifshitz tails for small eig
values. For cross-links of unit strength the spectrum is sho
to consist of a countable set ofd peaks. We present an an
lytical scheme to systematically compute the spectrum
iteration. We also consider cross-links of fluctuating streng
for which the spectrum is continuous and can be obtained
standard numerical means from the self-consistent inte
equation. In Sec. IV we present results from a numer
diagonalization of random connectivity matrices. We fi
compute the spectrum for a mean-field distribution of cro
links and compare it to the analytical results. Next, clus
distributions of random bond percolation in two and thr
dimensions are considered. Data for the stress relaxa
function are presented as well as finite-size scaling plots
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the static shear viscosity. We summarize our results in Sec
Some detailed calculations have been deferred to App
dixes.

Our paper is an extension of previous work, in which w
discussed the static shear viscosity@10,13# and self-diffusion
@14# in the sol phase as well as at the gelation transiti
There it was shown that the long time limit of the incohere
scattering function is determined by the zero eigenvalue
the connectivity matrix, and the static shear viscosity is
termined by the trace of the Moore-Penrose inverse of
connectivity matrix. Here we focus on thefull spectrum of
eigenvalues, which also determines the decay of the st
relaxation atfinite times.

II. MODEL AND OBSERVABLES

We consider a system ofN identical Brownian particles,
each characterized by its time-dependent position ve
Ri(t) ( i 51, . . . ,N) in d-dimensional space of volumeV,
i.e., with densityr5N/V. M permanent cross-links are in
troduced between randomly chosen pairs of particles (i e ,i e8),
resulting in a cross-link concentrationc5M /N. These cross-
links are modeled by a harmonic potential

Uª

d

2a2 (
e51

M

le~Ri e
2Ri

e8
!2, ~2!

whose overall strength is controlled by the parametera.0.
We use units of energy such thatkBT51 and allow for fluc-
tuations in the strength of cross-links by introducing the p
rameterle . Cross-links of uniform strength correspond to a
le51. In general each cross-linke is assigned independentl
a random strengthle according to the distributionp(l). The
connectivity of the particles is specified by the connectiv
matrix

G i i 85 (
e51

M

le~d i i e
2d i i

e8
!~d i 8 i e

2d i 8 i
e8
!, ~3!

in terms of which the potential reads U
5(d/2a2)( i ,i 851

N G i i 8Ri•Ri 8 . As usuald i j denotes the Kro-
necker symbol, i.e.,d i j 51 for i 5 j and zero otherwise.

We consider purely relaxational dynamics in an externa
applied space- and time-dependent velocity fieldv ext

a (r ,t):

] tRi
a~ t !52

1

z

]U

]Ri
a

~ t !1vext
a ~Ri~ t !,t !1j i

a~ t !. ~4!

Here, Greek indices indicate Cartesian coordinatesa
5x,y,z, . . . , and wewill always consider a flow field in the
x direction, increasing linearly withy, i.e.,

vext
a ~r ,t !5da,xk~ t !r y , ~5!

with a time-dependent shear ratek(t). The noisej has zero
mean and covariancê j i

a(t) j i 8
b (t8)&52z21 da,b d i ,i 8d(t

2t8), whered(t) is the Diracd function. Here, the bracke
^•••& indicates the average over the realizations of
4-2
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STRESS RELAXATION OF NEAR-CRITICAL GELS PHYSICAL REVIEW E64 021404
Gaussian noisej. The relaxation constant is denoted byz.
The probability distribution of cross-link configurationsG
5$ i e ,i e8%e51

M as well as the probability distribution of cros
link strengths will be specified later.

In Ref. @10# we computed the shear viscosity in the s
phase for~macro!molecular units of arbitrary internal con
nectivity. It was shown that the dependence on the cross-
concentration and in particular the critical behavior near
gelation threshold are the same for all~macro!molecular
units, as long as we consider identical units with a fin
degree of polymerization. We expect the same universal
havior for stress relaxation on long time scales, which
much larger than the longest internal time scale of a sin
~macro!molecule. Hence we specialize to the simplest un
namely, Brownian particles.

A. Relaxation of shear stress

We aim at the computation of the intrinsic shear str
sab(t) as a function of the shear ratek(t). For the simple
shear flow~5!, a linear response relation

sxy~ t !5E
2`

t

dtx~ t2t!k~t! ~6!

is valid for arbitrary strengths of the shear ratek(t). The
linear response or shear relaxation functionx(t) is given in
terms of the connectivity matrix as explained in detail in R
@13#,

x~ t !5
r

N (
i 51

N S @12E0~G!#expH 2
2dt

za2
G~G!J D

i i

5:
r

N
TrS @12E0~G!#expH 2

2dt

za2
G~G!J D . ~7!

The matrix E0 denotes the projector onto the subspace
zero eigenvalues ofG ~see Ref.@10#!. For a time-independen
shear ratek(t)5k, the stress tensor is time independent a
related to the shear rates5rhk via the static shear viscos
ity, given by Ref.@10#,

h5
za2

2dN
Tr

12E0~G!

G~G!
. ~8!

B. Self-diffusion

To discuss self-diffusion we set the externally applied
locity field to zero and focus on the incoherent scatter
function

S~q,t !ª lim
T→`

K 1

N (
i 51

N

exp$ iq•@Ri~ t1T!2Ri~T!#%L ~9!

and the squared time delayed displacement
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C~ t !ª lim
T→`

K 1

N (
i 51

N

@Ri~ t1T!2Ri~T!#2L . ~10!

We note thatRi(t1T)2Ri(t) is a Gaussian Markov pro
cess whose distribution in the limitT→` is characterized by
a vanishing mean and the covariance function

Gii 8~ t !ª lim
T→`

^@Ri~ t1T!2Ri~T!#•@Ri 8~ t1T!2Ri 8~T!#&

5
1

zE0

t

dtS expH 2
2dt

za2
GJ D

i i 8

. ~11!

Performing the integral in Eq.~11! leads to

Gii 8~ t !5
2

z F za2

2d

12E0

G S 12expH 2
2dt

za2
GJ D 1tE0G

i i 8

.

~12!

The matrixG is non-negative by inspection@see Eq.~2!#, as
it should be to ensure relaxation to equilibrium. The scat
ing function as well as the time delayed displacement can
expressed in terms ofGii 8(t) via

S~q,t !5
1

N (
i 51

N

exp$2q2Gii ~ t !% ~13!

and

C~ t !5
1

N (
i 51

N

Gii ~ t !. ~14!

C. Density of eigenvalues

All dynamic quantities of interest have been expressed
terms of G. Accordingly, once we know the eigenvalue
$g i% i 51

N and eigenvectors of this matrix, we can compu
dynamic observables for arbitrary times. In the following, w
shall discuss the density of eigenvalues

D tot~g!5 lim
N→`

1

N (
i 51

N

d~g2g i !5 lim
N→`

1

N
Tr d~g2G!

~15!

for several cross-link distributions. Here the overbar deno
the average over cross-link realizations. If one splits off
zero eigenvalues,D tot(g) can be written as

D tot~g!5T0~c!d~g!1@12T0~c!#D~g!, ~16!

whereD(g) is normalized to 1 and contains only the no
zero eigenvalues. If we group the particles into clusters,
eigenspace of modes with zero eigenvalues correspond
vectors that are constant within one cluster@14#. In other
words, there is one zero eigenvalue for each cluster and
dimension of the null space is just the number of clust
Ncl . The weight of zero eigenvalues is simply given by t
density of clusters, i.e.,T0(c)5Ncl /N.
4-3
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We restrict ourselves to the density of eigenvalues and
not attempt to compute eigenvectors, which is in gene
more difficult. Hence, we can compute only observables
can be written as (1/N)( i 51

N @ f (G)# i i , wheref is an arbitrary
function of G. The incoherent scattering function is not
this form@Eq. ~13!#, whereas the stress relaxation function

x~ t !5@12T0~c!#rE
0

`

dgD~g!expH 2
2dt

za2
gJ . ~17!

The zero eigenvalues are not to be included in the inte
tion, due to the term 12E0 in Eq. ~7!. Analogously, the
averaged viscosity is given by

h̄5@12T0~c!#
za2

2d E0

`

dg
D~g!

g
. ~18!

In the same way, the disorder averaged, time delayed
placement is determined by

C~ t !5@12T0~c!#
a2

d E
0

`

dg
D~g!

g S 12expH 2
2dt

za2
gJ D

1T0~c!
2t

z
. ~19!

It can also be expressed as an integral over the ti
dependent response function,

C~ t !5
2

zrE0

t

dtx~t!1T0~c!
2t

z
. ~20!

III. MEAN FIELD THEORY

We consider first the simplest distribution of cross-link
which ignores all correlations between cross-links, i.e.,
cross-links are chosen independently of each other and
pair (i e ,i e8) of particle indices is realized with equal prob
ability. As shown in Ref.@15# the particle clusters exhibit th
analog of a percolation transition at a critical cross-link co
centrationccrit51/2. Below this concentration there is n
macroscopic cluster and almost all finite clusters are tre
The average number of tree clustersTn with n particles is
given in the macroscopic limit by

lim
N→`

Tn

N
5tn5

nn22~2ce22c!n

2cn!
. ~21!

In particular the total number of clusters per particle is

T0~c!512c. ~22!

These results are independent of the distribution of cross-
strengths,p(l).

To compute the density of eigenvalues we introduce
resolvent
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G~V!5 lim
N→`

1

N
Tr

1

G2V
~23!

for complex argumentV5g1 i e,e.0. In the limit e→0,
we recover the spectrum from the imaginary part of the
solvent according to

D tot~g!5
1

p
lim
e↓0

Im G~g1 i e!. ~24!

It can be inferred from Eq.~15! that, conversely,D tot(g)
determinesG(V) via

G~V!5E
2`

`

dg
D tot~g!

g2V
. ~25!

A. Disorder average by replicas

Bray and Rodgers@8# have shown how to reduce the com
putation ofD tot(g) for cross-links of unit strength~i.e., all
le51) to the solution of a nonlinear integral equation. Th
derivation is easily generalized to cross-links of strengthl
that fluctuates according to a given distributionp(l). We
restrict ourselves to distributionsp(l) such that

E
0

`dl

l
p~l!,` ~26!

holds. It will be shown below@see Eq.~37!# that this condi-
tion is necessary to ensure a finite viscosity in the sol pha
Following Bray and Rodgers we introduce a generating fu
tion

Z~V!5E
RNS )i 51

N
df i

A2p
D expS i

2 (
i , j

f if j~Vd i j 2G i j ! D ,

~27!

which determines the resolvent, according to

G~V!5 lim
N→`

2

N

] ln Z

]V
. ~28!

The average over the disorder is performed with the rep
trick, resulting in

Zn5E
RNS )i 51

N

)
a51

n df i
a

A2p
D expS i

2
V(

i 51

N

f̂ if̂ i

1
c

NE0

`

dlp~l! (
i , j 51

N

e2 il(f̂ i2f̂ j )
2/22cND . ~29!

We assume that the connectivity is intensive, lim
N→`

(c/N)

50, and have introduced the notationf̂ i5(f i
1 ,f i

2 , . . . ,
f i

n) for n-times-replicated variables. In the next step o
decouples different sites as shown in Ref.@8# and performs a
saddle-point approximation for largeN. This gives rise to a
self-consistent equation for a functiongV( x̂),
4-4



lic

l-

-

-

ar

i-
not

our-
ely

-

vor
l
n-
r

ut
the

-
s
of

STRESS RELAXATION OF NEAR-CRITICAL GELS PHYSICAL REVIEW E64 021404
gV~ x̂!52cE
0

`

dlp~l!
E dŷe[ iV ŷ212gV( ŷ)2 il( ŷ2 x̂)2]/2

E dŷe[ iV ŷ212gV( ŷ)]/2

~30!

which in turn determines the resolvent according to

G~V!5 lim
n→0

i

n

E dx̂x̂2e[ iV x̂2/21gV( x̂)]

E dx̂e[ iV x̂2/21gV( x̂)]

. ~31!

In the last step of the calculation one assumes a rep
symmetric solution for the saddle-point equation:

gV~ x̂!5gV~r! with r5A(
a

xa
2. ~32!

The limit n→0 can then be performed resulting in the fo
lowing nonlinear integral equation forgV(r) @cf. Eqs.
~16,17! in Ref. @8##:

gV~r!52cE
0

`

dl p~l!expH 2
il

2
r2J

12ic e22cE
0

`

dl p~l!E
0

`

dx lrI 1~ ilrx!

3expH 2
il

2
~r21x2!1

iV

2
x21gV~x!J ~33!

with gV(0)52c. Here I n(z) are the modified Bessel func
tions of the first kind. The solution of Eq.~33! yields the
resolvent

G~V!52E
0

`dl

l
p~l!1

i

2cE0

`

dr rgV~r! ~34!

and the density of eigenvalues

D tot~g!5
1

2cp
lim
e→0

ImH i E
0

`

drrgg1 i e~r!J . ~35!

B. Moments and Lifshitz tails

If all inverse momentsMn of the density of nonzero ei
genvaluesMnª*0

`dgg2nD(g), nPN, exist, one can derive
the following asymptotic expansion of the resolvent:

G~V!5
c21

V
1

2dh

za2
1c(

n51

`

VnMn11 ~36!

by expanding the denominator in Eq.~25! in a geometric
series. As we show in Appendix A, the lowest moments
given explicitly by
02140
a-

e

M15
1

4c F lnS 1

122cD22cG E
0

`dl

l
p~l!5

2dh

za2
~37!

and

M252
~5P224P1

2!

240c2
lnS 1

122cD2
8c326c225c11

30c~122c!3
P1

2

2
4c223c21

24c~122c!2
P2 ~38!

with Pnª*0
`dll2n p(l). We are interested in the small e

genvalues that are due to the geometry of the clusters and
due to the appearance of weak links. Hence we confine
selves to distributions such that weak cross-links are unlik
to occur. More precisely we require

lim
l↓0

lnu ln p~l!u
u ln lu

.
1

2
. ~39!

The divergence of the moments,M1 and M2, suggests a
Lifshitz tail of the density of states of the form

D~g!}expH 2S g0~122c!3

g D kJ , g ↓ 0, c, 1
2 , ~40!

since for positivek this ansatz implies for the inverse mo
ments

Mn}~122c!23(n21), c↑ 1
2 . ~41!

Bray and Rodgers have given a heuristic argument in fa
of the ansatz~40! with k51/2. They argue that out of al
clusters for givenn the linear one has the smallest eige
value, namely,gmin5g0n22. There is just one linear cluste
for given n, so that its contribution to the spectrum is

D lin5
1

2c (
n

~2ce(22c)!ndS g2
g0

n2D ;e2Ag0 /g. ~42!

Arbitrary finite clusters may be attached to the chain witho
altering the dependence of the smallest eigenvalue on
length of the chain. If a finite cluster of massmi is attached
to site i of the linear chain, the smallest eigenvalue isgmin
5g0 /min

2. Replacing

mi;m̄5

(
n

ntn

(
n

tn

5
1

122c
~43!

leads togmin5g0(122c)/n2. The number of clusters con
tributing to D(g) for small g is much larger if attachment
are taken into account: The probability of finding a chain
lengthn, regardless of attachments, is given by (2c)n. Hence
the density of eigenvalues is estimated as
4-5
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D lin5
1

2c (
n

~2c!ndS g2
g0~122c!

n2 D
;expH 2S g0~122c!3

g D 1/2J . ~44!

Here, we have expanded ln(2c);2c21 for c sufficiently
close to its critical valueccrit51/2 to obtain the Lifshitz tail
near criticality. In Appendix A 3 we derive rigorous upp
and lower bounds forD(g), which prove thatD(g) has
indeed a Lifshitz tail of the formD(g);exp@2Ah(c)/g#.
We are unable to derive the dependence ofh(c) on cross-
link concentrationc, which is, however, suggested by th
lowest order moments~38! and ~74!.

In the following two subsections we shall discuss tw
special choices forp(l). In the first case all cross-links ar
of unit strength, giving rise to a point spectrum. In the s
ond case the strength of the cross-links fluctuates accor
to p(l)5exp(21/l)/l2. The integral equation~33! simpli-
fies considerably for this distribution and allows for a so
tion by iteration.

C. Exact solution of the integral equation for uniform cross-
link strengths

For cross-links of unit strength, the integral equation~33!
reduces to Eq.~16! in Ref. @8#,

gV~r!52c expS 2
i

2
r2D H 11 ie22cE

0

`

dx rI1~ irx!

3expS i ~V21!

2
x21gV~x! D J

52c expS 2
i

2
r2D H 122c e22cE

0

`

dx J1~x!

3expF i

2
~V21!

x2

r2
1gVS x

r D G J . ~45!

The second equality follows from a substitutionx→rx and
from the basic relation between the Bessel functions of
first kind Jn and the modified Bessel functionsI n , in particu-
lar, I 1(x)52 iJ1( ix).

To get some feeling for the spectrum of eigenvalues,
first consider the case of smallc. We then have predomi
nantly small clusters, i.e., single particles, dimers, trime
etc. The connectivity matrix of a dimer has eigenvaluesl1
50,l252. A linear chain of three particles has eigenvalu
$0,1,3%, a linear chain of four particles has eigenvalu
$0,2,21A2,22A2%, and a star with three legs has eigenv
ues$0,1,4%. These are the only trees up toO(c3). Hence in
this order the spectrum consists ofd functions at the above
eigenvalues, with each cluster contributing to the weight
the d functions according to its frequency of occurrenc
Next we show thatd functions in the spectrum correspond
Gaussian functionsgV(r). The ansatz
02140
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ng
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e

e
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.

gV~r!52ca exp@2 iz~V!r2/2#, ~46!

where z5z(V) is an arbitrary function ofV5g1 i e with
Im$z%,0 for e.0, leads toG(V)5211a/z. In the limit
Im$z%→0 each zerog i of Re$z(g i)%50 gives rise to ad
function in the spectrum,

D tot~g!5a(
i

d~g2g i !

u]z/]g~g i !u
. ~47!

Next, we construct an approximation to the integral eq
tion ~45! by successive iteration. We start with

g0
V~r!ª2c. ~48!

The first step of the iteration gives

g1
V~r!52c expS 2

i

2
r2D H 12e22cE

0

`

dx J1~x!

3expF i

2
~V21!

x2

r2
1g0

VS x

r D G J ~49!

52c expS 2
i

2

V

V21
r2D ~50!

since the integral on the right-hand side can be calcula
exactly @16#. The spectrum consists of ad function at g
50, D1(g)5d(g). The next step of the iteration gives

g2
V~r!52c expS 2

i

2
r2D H 12e22cE

0

`

dx J1~x!

3expF i

2
~V21!

x2

r2
1g1

VS x

r D G J ~51!

52c expS 2
i

2
r2D H 12e22cE

0

`

dx J1~x!

3expS i

2
~V21!

x2

r2D (
k50

`
~2c!k

k!

3expS 2
i

2

kV

V21

x2

r2D J ~52!

by Taylor expansion of the exponential ofg1
V(x/r). Again,

the integrals appearing in Eq.~52! can be computed exactly
yielding

g2
V~r!52c(

k50

`

ak
(2) expS 2

i

2
zk

(2)r2D ~53!

ak
(2)
ªe22c

~2c!k

k!
, zk

(2)
ªS 11

1

V212kV/~V21! D .

~54!
4-6
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Note that (k50
` ak

(2)51. In this iteration, the spectrum i
given by

D2~g!5
12e22c

2c
d~g!1 (

k52

`

e22c
~2c!k21

k~k22!!
d~g2k!.

~55!

Next, we consider a general ansatz forgi
V of the form

gi
V~r!52c(

k50

L

ak
( i ) expH 2

i

2
zk

( i )r2J , ~56!

with (k50
` ak

( i )51. L is an arbitrary positive integer and wi
be allowed to tend tò below. We insert the ansatz~56! into
Eq. ~45! and use a similar Taylor expansion as above
obtain

gi 11
V ~r!52ce22c (

l 050

`

••• (
l L50

` S )
k50

L
~2cak

( i )! l k

l k!
D

3expH 2
i

2 S 11
1

V212 (
k50

`

l kzk
( i )D r2J .

~57!

When we now letL→`, we get the expression

gi 11
V ~r!52c (

$( l k)%
a( l k)

( i 11) expS 2
i

2
z( l k)

( i 11)r2D ~58!

with

a( l k)
( i 11)5e22c)

k50

`
~2cak

( i )! l k

l k!
~59!

and

z( l k)
( i 11)511

1

V212 (
k50

`

l kzk
( i )

. ~60!

We use the notation (l k) to denote a whole sequence of no
negative integers, whilel k ~without parentheses! denotes the
kth element of the sequence. Out of all possible such
quences we only need those with afinite number of nonzero
elements. This is becauseak

( i )→0 as k→`, and thus
)k50

` (2cak
( i )) l k/ l k! 50 if there were infinitely many nonzer

elements in (l k). The set of all sequences with a finite num
ber of nonzero elements is denoted by$( l k)%. The summation
in Eq. ~58! thus goes over a countable set and theref
gi 11

V (r) is of the same functional form asgi
V(r). It is easy to

see that($( l k)%a( l k)
( i 11)51 holds also for the next iteration.

Sinceg2
V(r) is an expression of the form of Eq.~56!, it

follows by induction that allgi
V(r), i>2, are of the same
02140
o

e-

e

form. This observation enables us to write downfix-point
equations for the coefficientsa and the exponential prefac
tors z:

a( l k)
( i 11)5ak

( i ) and z( l k)
( i 11)5zk

( i ) . ~61!

As shown in Appendix B, these equations can be solve
the indices on the left- and right-hand sides are matched
mapping the sequence (l k) that appears as index on the lef
hand side onto a simple numbern5(kl kM

k with some posi-
tive integer M. Afterwards, M is taken to infinity. In the
process, a new structure of the coefficientsa andz emerges:
each pair of coefficients (ai ,zi) falls into one of infinitely
many ‘‘classes’’ of increasing complexity. The first thre
classes are given by the following expressions~the upper
index denotes the class!; the general form can be found i
Appendix B:

a0
05e22c, z0

05
V

V21
, ~62!

an
15e22c

~2ca0
0!n

n!
, zn

15
V2nz0

0

V212nz0
0

, ~63!

a( l k)
2 5e22c)

k50

`
~2cak

1! l k

l k!
, z( l k)

2 5

V2 (
k50

`

l kzk
1

V212 (
k50

`

l kzk
1

.

~64!

Note that the expression for a higher class automatically c
tains all of the lower classes as well if the lower-cla
expressions are recursively inserted, e.g.,a1,0,0, . . .

2

5e22c(2ca0
1)1/1!5a1

1 . This remains true in the genera
case. For higher classes, the indices become more com
cated, e.g., for class 3 it is necessary to use (l (ki )

) as index on
the left hand side. As a shorthand, however, it is conven
to use the notation (l k) or just k even for the higher classes
It is then understood thatk itself may stand for a more com
plicated object like a nested sequence. See Appendix B
details.

We mention the result thatsm, the sum over alla from
classes 0 tom, is given by

sm
ª (

$( l k)%
a( l k)

m 5e22c)
k

e2cak
m21

5exp$22c~12sm21!%,

~65!

and

s05e22c ~66!

As long as c, 1
2 , the corresponding fix-point equations

5e22c(12s) has a stable fixpoint ats51, which implies
limm→`sm51, as it should be. The quantity 12sm is there-
fore a measure for the quality of an approximation that o
goes up to classm. We can conclude that for smallc only a
few classes are sufficient whereas forc close to1

2 consider-
4-7
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ably more are needed. Forc. 1
2 , the fix point becomes un

stable, indicating that the iteration no longer converges to
full solution of the integral equation due to the appearance
the infinite cluster.

Implications for the density of states

Making use of the solution just constructed, the resolv
can be written as

G~V!5211 lim
m→`

(
k

ak
m

zk
m

. ~67!

Here, inclusion ofa’s andz’s from classes lower thanm in
ak

m andzk
m has been implied as explained above. Analogo

to Eq. ~47!, this results in the exact density of states

D tot~g!5 lim
m→`

(
k

ak
m(

i

d~g2gki
m!

u]zk
m/]g~gki

m!u
, ~68!

that is, a sum ofd peaks located at the rootsgki
m of the

respectivezk
m(g) with weight factorsak

mu(]zk
m/]g)(gki

m)u21.
It can be proved with Cauchy’s integration theorem appl
to (z( l k)

m )21 and Eq.~64! or the more general expression fro

Appendix B that( i u(]zk
m/]g)(gki

m)u2151 holds for every
zk

m . This property guarantees that the total weight of
peaks in the spectrum is 1~recall that the sum of alla’s is
also 1!. There is no continuous part of the spectrum, but t
would change forc. 1

2 due to the appearance of an infini
cluster.

It is impossible to find the roots of allzm but classes 0 and
1 can be solved exactly. We deduce from Eq.~62! that the
roots of zn

1 are located atgn,150 and gn,25n11. The
weight factors are easily computed as 1/(n11) for the peak
at 0 andn/(n11) for the peak atn11. The density of ei-
genvalues including class 0 and 1 then reads

D tot
1 ~g!5

e2ce22c
21

2c
d~g!1 (

k52

`
~2ce22c!k

2ck~k22!!
d~g2k!.

~69!

Note that this is different from the result of the second ite
tion, Eq. ~55!, although it contains the same peaks.

Another consequence of the exact solution of the integ
equation is that the density of states doesnot show scaling
behavior with respect toc, i.e., it cannot be written in the
form D tot(g); f „g/g* (c)… with some typicalg* (c). This
follows from the fact that the positions of the peaks are giv
by the roots of thez’s, which are independent ofc, and only
the weights of the peaks depend onc. This can obviously
never result in an exact scaling form: if scaling were valid
small change ofg* would result in a small shift of the pea
positions, but they must stay fixed. It will be shown belo
for fluctuating cross-link strengths that numerical solutio
for the eigenvalue density indicate that not even an appr
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mate scaling relation holds. This view will furthermore b
supported by the results of the numerical diagonalization
random matrices for different types of system.

To conclude the discussion of the density of states
uniform cross-link strengths, the spectrum from the iterat
solution of the integral equation is compared with resu
from numerical diagonalization ofG ~for details see Sec. IV
below!. Figure 1 shows the numerically computed spectr
for c50.1. Note that there is a peak atg51, which is not
present in Eq.~69!. This ‘‘missing peak’’ can be found only
in higher classes, e.g., inz0,1,0, . . .

2 5g(g21)(g23)/(g3

25g216g221). Other roots that can easily be identifie
with peaks in the numerical results are at 26A2 ~stemming
from z1,1,0, . . .

2 ) or at 5/26A5/2 ~stemming fromz0,2,0, . . .
2 ).

Figure 2 shows a direct comparison between the same
merical simulation and a few explicitly calculated pea
from classes up to class 3. The agreement regarding the
sition of the peaks is excellent but some weight is still mi
ing from some of the peaks. This weight is expected to

FIG. 2. Comparison between the simulation~solid lines! and
some selected peaks calculated from the exact solution~dashed
lines! for c50.1. The analytical peaks have been slightly shifted
the right for better comparison, otherwise they would be indist
guishable from the numerical peaks.

FIG. 1. Numerical simulation of the density of states f
c50.1.
4-8
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found in higher classes and/or in differentz’s which happen
to have a root at the same position.

D. Numerical integration for special p„l…

The integral equation~33! simplifies considerably for a
special choice ofp(l), namely,

p~l!5
1

l2
expH 2

1

lJ , ~70!

implying Pn5n! Inserting the ansatzgV(r)5: f V(r2/2) into
Eq. ~34! leads to the following representation:

G~V!5211
i

2cE0

`

dx fV~x!, ~71!

wheref V(x) is the solution of the ordinary differential equa
tion ~see Appendix A 2 for details!

f V~x!52 ix f V9 ~x!12c exp$22c1 iVx1 f V~x!%,

f V~0!52c. ~72!

This allows one to write down the general term in t
asymptotic expansion ofG(V) for small V. Close to the
critical point the lowest order moments are explicitly giv
by

M15
1

4c H lnS 1

122cD22cJ , c→ 1

2
, ~73!

M25
2

15~122c!3
1

13

60~122c!2
1O„~122c!21

…, c→ 1

2
,

~74!

M35
47

240~122c!6
1

16

105~122c!5
1O~~122c!24!,

c→ 1

2
, ~75!

and

M45
5762

6435~122c!9
1

1159

720 720~122c!8

1O„~122c!27
…, c→ 1

2
, ~76!

giving additional support to the conjecture about the Lifsh
tail Eq. ~40!.

For a numerical evaluation ofG(V) it is more convenient
to rewrite Eq.~33! in the form
02140
gV~r!52cA2irK1~A2ir!

14ice22crK1~A2i r!E
0

r

dhI 1~A2ih!

3expH iV

2
h21gV~h!J

14ice22crI 1~A2ir!E
r

`

dhK1~A2ih!

3expH iV

2
h21gV~h!J , ~77!

since in this representation the integrands do not dependr
and the numerical integration thus needs to be done o
once per iteration, resulting in time and memory requi
ments only of the order of the number of integration g
points. This allows for high precision computations
gV(r), G(V), andD(g).

Figures 3 and 4 show the results for the density of eig
values from a numerical integration of Eq.~77! using a Pade´
approximation in order to extrapolateV5g1 i e to e50.
There are several noteworthy points to be seen in these
ures:

First, we expect to see Lifshitz tails forall c, 0,c,1/2,
for asymptotically smallg. Precisely at the critical poin
D(g) goes to a constant asg→0. For cross-link concentra
tions close to the critical one, we expect to see a crosso
between an approximately constant region at intermediatg
to a Lifshitz tail at very smallg. Since small values ofg are
hard to access numerically, this crossover makes it diffic
to observe the Lifshitz tail, except possibly for smallc. For
intermediatec the data in Fig. 4 can be described appro
mately by a straight line but with a slope different fro
2 1

2 . This property will be confirmed by the results from th
numerical diagonalization presented below.

FIG. 3. DensityD(g) of nonzero eigenvalues for the mean-fie
network for p(l) given by Eq.~70! for different concentrationsc.
The lines are the analytical results@i.e., the results from the numeri
cal solution of Eq.~77!# while the data from the numerical diago
nalization are shown by the symbols.
4-9
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A second remarkable point is that the density of states
seen in Fig. 3 is clearly not suited to a scaling ansatz. Th
are ~at least! two different scales contained in the plot: th
first is the drop-off lengthg0(c) which describes the scale o
which D(g) goes to 0 for smallg, the other is the position o
the maximum,gmax(c). While g0 goes to 0 forc→ 1

2 , gmax

evidently does not; these two features together are obvio
incompatible with a scaling ansatz of the formD(g)
; f „g/g* (c)… with some typicalg* . This finding is in agree-
ment with the observation from the exact solution for u
form cross-link strength where scaling was not possible
ther. Here, however, the statement is even stronger s
even an approximate scaling relation is ruled out. Note
peculiar feature that a second maximum appears inD(g) for
small g at the percolation thresholdc5 1

2 . This is not an
artifact and is confirmed by the numerical diagonalization
shown in the figure. It may even indicate the presence o
third scale since the emergence of a maximum can alread
suspected in the curves for smallerc.

E. Stress relaxation

The characteristic features of the spectrum as discu
above have important consequences for the stress relax
function. In particular, the Lifshitz tail in the spectrum give
rise to an anomalous long time decay of the stress relaxa
function in the sol phase for allc,ccrit . The true asymptotic
behavior ofD(g);exp@2Ah(c)/g#, which is proven rigor-
ously in Appendix A 3, impliesx(t);exp@2(t/t* )b# with b
51/3. However, we are unable to estimate the timesc
needed to reach the asymptotic regime. For smaller tim
the stress relaxation function is characterized by effec
exponents, just as the spectra in Fig. 4 can be fitted to
shitz tails with effective exponents that depend on cross-
concentrationc.

The divergence of the time scalet* (e);e2z is deter-
mined by the functionh(c). The expansion of the resolven
for smallV suggestsz53. At the critical point the density o
eigenvalues is constant asg→0, implying a logarithmic di-

FIG. 4. Double logarithm of the densityD(g) of nonzero eigen-
values as a function of lng for several concentrationsc.
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vergence of the static shear viscosity andx(t);t2D with
D51.

The absence of scaling in the density of states is a
relevant for the stress relaxation function. The presence
more than one characteristic scale for the eigenvalues imp
more than one characteristic time scale for the stress re
ation function. As a consequence, the stress relaxation fu
tion does not scale either. This point will be discussed furt
below in the context of numerical diagonalization of the co
nectivity matrix. Attempts to scale data for the time depe
dent stress relaxation function fail~see Fig. 14 below!.

IV. NUMERICAL DIAGONALIZATION

A. Numerical methods

In this section the eigenvalue densitiesD(g) of three dif-
ferent types of random network are studied numerica
mean-field ~MF! networks as well as two- and three
dimensional simple square/cubic grids. For the first ca
cross-links are allowed for all pairsi , j of nodes while for the
other networks only cross-links between neighboring no
may appear. For the finite-dimensional grids we apply pe
odic boundary conditions in all directions. The size of t
networks is denoted byN, with N5Ld (d52,3) for the
finite-dimensional cases. For the numerical treatment,
consider random graphs with a fixed numberM of vertices,
i.e. the cross-link concentration isc5M /N. Every cross-link
has the same probability of occurrence. For the impleme
tion of the graphs on the computer, theLEDA library @17# was
used. Network sizes up toN510 000 ~MF!, N53136 (d
52) and N54096 (d53) were studied. For each syste
size up to 104 different realizations of the disorder were co
sidered~1000 for the largest sizes!. Different concentrations
of the cross-links between 0 and the percolation thresh
ccrit were treated, whereccrit(MF)51/2, ccrit(d52)51, and
ccrit(d53)'0.7464@18#.

We consider the same two cases regarding the streng
the cross-links as above: Either all cross-links have the s
strengthl51 or their strengths are distributed random
with the probability density given in Eq.~70!. Numerically,
the random values for the strengths of the cross-links
drawn using the inversion method@19#. A random numberr
is drawn that is uniformly distributed in@0,1#. Then the val-
ues oflª21/ln r are distributed according to~70!. For test-
ing purposes also some systems were studied where
strengths were uniformly distributed in the interval@0.5,1.5#.
In all cases no significant deviations of the measurable qu
tities for different distributions could be observed. The ma
difference is that for cross-links of unit strength the distrib
tion D(g) of the eigenvalues is dominated by a sum ofd
peaks below the percolation threshold while for cross-lin
of continuous strength the distributionD(g) is purely con-
tinuous~see below!.

The numerical method works as follows. Random n
works are created, with constant or random cross-l
strengths as needed. Then, for each graph the conne
components are determined@20#. For each connected com
ponent the connectivity matrix is calculated, which is a re
symmetric matrix. Therefore, for determining its eigenvalu
4-10
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the QR algorithm and the Householder method@21# can be
applied. Next, the eigenvalues are sorted in increasing or
Each connected component has one smallest eigenvalu
Because of numerical errors usually the smallest eigenv
is not zero but quite small, depending on the distribution
the strengths of the cross-links. Consequently, the sma
eigenvalue is assigned the value zero. Finally, the eigen
ues of all components are collected, sorted again, and st
for further evaluation for each realization of the network.

B. Results for the mean-field system

First, we consider the densityD(g) of nonzero eigenval-
ues for the mean-field network at the percolation thresh
c51/2. Data for the casep(l)5d(l21) have already been
presented in Fig. 1. Here we consider the case where
strengths of the cross-links are distributed according
~70!. In Fig. 5 the resulting density is shown for differe
system sizes together with the analytical result@obtained
from the numerical solution of Eq.~77!#. It can be seen tha
the sizeN510 000 is already sufficient to reproduce the an
lytical behavior for a large range of eigenvalues. In partic
lar, the ‘‘dip’’ near g50.15 is validated by the numerica
data~see inset!. Because of the finite system sizes, arbitrar
small eigenvalues cannot be found; thus the numerics
agree with the analytical result in that region. Neverthele
the analytical result limg→0D(g).0 can indeed be con
firmed by extrapolating the numerical data to infinite syst
size.

The spectrumD(g) for different cross-link concentration
c is presented in Fig. 3. Once more, the numericalN
510 000) and the analytical results agree very well. F
small g, the logarithm of the spectrum should behave
;2g21/2 ~Lifshitz tail!. Figure 6 shows the logarithm o
D(g) in a double logarithmic plot in complete analogy
Fig. 4. Presumably, the system size ofN510 000 is still too

FIG. 5. DensityD(g) of nonzero eigenvalues for the mean-fie
network at the percolation thresholdc50.5 from numerical diago-
nalization. The solid line is the analytical result, which is hard
distinguishable from the result forN510 000. The inset magnifie
the regiongP@0,0.4#, where the numerical results for the large
system sizeN510 000 are shown by circles.
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small in order to observe the asymptotic behavior of
density of states for small eigenvalues.

C. Results for finite-dimensional systems

Next, we consider three-dimensional systems, which
believed to describe real polymer networks more appro
ately. The density of eigenvalues for the case where all cro
links have the same strength,p(l)5d(l21), is shown in
Fig. 7 for N5163 and c50.2. As in the mean-field case,
collection ofd-peaks is obtained. Since this kind of distrib
tion is more difficult to analyze, we turn again to the mod
where the strengths of the bonds have the distribution~70!.
Results for the largest system sizeN5163 and different
cross-link concentrations are shown in Fig. 8. Below the p
colation transitionccrit'0.7464 the distribution exhibits a
maximum and converges to 0 for small eigenvalues, sim

FIG. 6. Double logarithmic plot of2 ln@D(g)# for different con-
centrationsc of the mean-field network. The line shows a functio
2 ln(g)/21const~Lifshitz tail!, which is the behavior predicted b
theory.

FIG. 7. DensityD(g) of nonzero eigenvalues for the cubic ne
work with all bonds having the same strengthl51 (c50.2,N
5163). Similar to the case of the mean-field network, a sum od
peaks with strongly varying heights is obtained.
4-11
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to the mean-field case. At the transition,D(g) diverges as
g→0 ~see also inset!. Below we will show that this behavio
changes the divergence of the viscosity near the percola
threshold. The eigenvalue densities for the two-dimensio
network look qualitatively similar and are therefore n
shown here. The true asymptotic behavior asg→0 is diffi-
cult to access, just as in the mean-field case.

The changes in the spectrum as compared to the m
field case also affect the stress relaxation, which we inve
gate next. First, the viscosity given by

h̄5@12T0~c!#E
0

`D~g!

g
dg ~78!

is considered. Here, irrelevant prefactors have been om
for simplicity; see Eq.~18! for the complete expression. I
the numerical calculation we compute

h5
1

N (
g i.0

1

g i
~79!

for each realization and subsequently average over diffe
realizations of the disorder to obtainh̄. Whereas for the
mean-field network the viscosity diverges logarithmically f
c→ccrit , for finite-dimensional systems a divergenceh(c)
;(ccrit2c)2k is expected. The reason for the different dive
gences is the manner in whichD(g) behaves for smallg at
the percolation threshold: for the mean-field netwo
limg→0D(g) is finite, but for the finite-dimensional grid
D(g) diverges asg→0. The critical exponentk of the vis-
cosity can be determined from

h~c,L !5L2k/nh̃@~c2ccrit!L
1/n#, ~80!

similar to the usual finite-size scaling relations@22# for the
percolation transition. Hereh̃ is a universal function andn is
the exponent describing the divergence of the correla
length when approaching the percolation transition. The

FIG. 8. DensityD(g) of nonzero eigenvalues for the cubic ne
work with p(l) given by Eq.~70! for different concentrationsc.
The inset shows the finite-size dependence at the percolation th
old for small eigenvalues.
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of finite-size scaling enables us to circumvent the proble
which are posed by the lack of very small eigenvalues
finite graphs.

By plotting hLk/n against (c2ccrit)L
1/n with correct pa-

rametersn and k the data points for different system size
and c'ccrit should collapse onto a single curve. We ha
taken the valuesn(d52)54/3 andn(d53)50.88 from the
literature@18# and adjustedk/n. The best collapse nearccrit
was obtained withk(d52)51.19 andk(d53)50.75. The
results are presented in Figs. 9 (d53) and 10 (d52). The
values we obtained for the different distributions of t
cross-link strengths agree within the error bars.

The value ofk for two dimensions agrees very well wit
the resultk;1.17 found previously by Broderix et al.@10#,
using the high precision simulations of Gingold et al.@12#.

sh-

FIG. 9. Finite-size scaling plot of the viscosityh(c,L) for the

three-dimensional grid. A scaling behavior ofh(c,L)5L2k/nh̃@(c
2ccrit)L

1/n# is assumed. Usingn50.88 andk50.75 the points for
L510,13,16,20 collapse onto one curve near the critical concen
tion.

FIG. 10. Finite-size scaling plot of the viscosityh(c,L) for the

two-dimensional grid. A scaling behavior ofh(c,L)5L2k/nh̃@(c
2ccrit)L

1/n# is assumed. Usingn54/3 andk51.19 the points for
L510,14,20,28,40,56 collapse onto one curve near the critical c
centration. Since finite systems are treated, the maximum ofh(c) is
below the critical concentrationccrit51 of the infinite lattice.
4-12
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The result for the three-dimensional case (k50.75)is slightly
worse in comparison withk;0.71@10,12#. The reason is tha
here only small system sizes up to 203 could be treated due
to the fact that all eigenvalues are calculated. If one is o
interested ink, it is computationally less expensive to com
pute the Moore-Penrose inverse of the connectivity mat
Thereby one might be able to study system sizes as larg
those used in Ref.@12#. For the realizations treated here, w
have checked other characteristic results concerning the
colation transition, like the critical exponents, which de-
scribes the behavior of the cluster-size distribution. T
finite-size scaling plots have a poor quality for this quant
too, resulting in a rather low precision of the exponent v
ues. Additionally, we have observed a systematic drift in
results: By including even smaller system sizes, the sca
plot results ink50.89, which differs even more from th
value obtained before. Consequently, we believe that la
system sizes are needed, to obtain a more reliable resultk
via numerical diagonalization of random connectivity mat
ces.

Next, the behavior of the stress relaxation function~again
omitting irrelevant prefactors and using dimensionless ti
2dt/za2→t)

x~ t !5@12T0~c!#E
0

`

D~g!exp~2gt !dg ~81!

was investigated; see Eq.~17! for the complete expression
The functions were obtained by first calculatingD(g) and
then numerically integrating it. It would take too much tim
on the computer to first calculatex(t) for each realization by
directly summing up the contributions and then average o
the disorder. Here, we have investigated systems with c
tinuously distributed cross-link strengths because they re
in continuous eigenvalue densities where it is easier to ob
stable numerical data.

In Fig. 11 the numerical results for the mean-field n
work, the d52 and thed53 models for the largest size
(c5ccrit) are shown. As mentioned before, the numeri
simulations are restricted to finite sizes of the networks
to a finite number of realizations of the disorder. Therefo
the eigenvalue densitiesD(g) always have a smallest eigen
value gmin with D(g)50 for g,gmin . Consequently, the
long-time behavior is dominated by an exponential decre
exp(2gmint), irrespective of the true form ofx(t). This re-
sults in a negative curvature in the double-logarithmic p
for long times. Thus, in the numerical results, the asympto
form of the relaxation function is visible only for intermed
ate times~see Fig. 11!. At c5ccrit a x(t);t2D behavior is
expected. By fitting we obtainD51.029(5) ~mean field!,
D50.830(2) (d53), andD50.741(2) (d52). The result
for the mean-field case is known exactly to beD51. The
discrepancy is again due to the finite sizes of the netwo
Indeed, we have observed that for smaller networks a va
of the exponent is obtained that is even larger. So the re
D51 seems to be confirmed. The value for the thr
dimensional grid is compatible with the large range of resu
obtained in experiments@5#.
02140
ly

.
as

er-

e
,
-
r
g

er
r

e

er
n-
lt
in

-

l
d
,

se

t
ic

s:
e

ult
-
s

The stress relaxation functionx(t) for different concen-
trationsc of the cross-links is shown in Figs. 12~mean field!
and 13 (d53). In both cases we find exponential decay f
the longest times due to finite system size. For intermed
times a stretched exponential behaviorx(t);exp@2(t/t)b# is
visible. At least for finite system sizes the exponentb seems
to be nonuniversal; we find values ranging fromb50.5 for
small cross-link concentrations down tob50.2 close to the
percolation threshold. We suspect that the accessible ti
are too short to see the true asymptotic behavior, which
least in mean-field theory is known to be a stretched ex
nential with exponentb51/3, resulting from the Lifshitz tail
in the density of states. For small timesx(t) decreases like
t2D andx(0)51 by definition.

FIG. 11. Stress relaxation functionx(t) at the the critical con-
centrationc5ccrit for the three types of model considered here, w
continuously distributed strengths of the cross-links in all th
cases. Shown are the results for the largest sizes that coul
treated with sufficient accuracy. For the part of the long-time
havior which is accessible to the numerical simulations, ax(t)
;t2D behavior is visible. From fitting we obtainD51.029 ~mean
field!, D50.830(2) (d53), andD50.741(2) (d52).

FIG. 12. Rescaled stress relaxation function2 ln@x(t)tD# as a
function of the time for the mean-field network (D51.029) with
different concentrationsc of the cross-links. The straight lines co
respond to stretched exponentials with exponentsb50.332 and
b51.
4-13
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Moreover, this variation of the exponentb makes it im-
possible to observe a scaling formx(t);t2Dg(t/t), wheret
is a typical time scale that diverges liket;(ccrit2c)2z when
approaching the percolation threshold. For the mean-fi
network, the expectations from the Lifshitz tails arez53 and
D51, while g(t) is the stretched exponential function, b
we have already mentioned that there seems to be no sc
possible due to the existence of more than one scale. In
14 a scaling plot ofx(t) is shown.x(t)tD is plotted against
t3(ccrit2c)z for mean-field networks of different concentr
tions c. We have used only the regions below the finite-s
asymptotic behavior (b51). It can be seen that the qualit
of the collapse is rather bad, explained by the variation ob
with c. One might think that near the transitionc'ccrit the
scaling may be better. But there the collapse is even wo
~not shown!, because even larger systems are necessa
reach the asymptotic regime for the small eigenvalues
explained before.

FIG. 13. Rescaled stress relaxation function2 ln@x(t)tD# as a
function of the time for the three-dimensional network (D
50.830) with different concentrationsc of the cross-links. The
straight lines correspond to stretched exponentials with expon
b50.386 andb51.

FIG. 14. Scaling plot for the stress relaxationx(t)tD as a func-
tion of t(ccrit2c)z for the mean-field network (N5104, randomly
distributed strengths of cross-links! with the valuesD51,z53.
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For finite-dimensional systems, the quality of the scalin
plot is similar. Therefore, it is not possible to make a reliab
estimate for the dynamical exponentz in that case.

V. CONCLUSIONS

Within our model, the dynamics of a cross-linked polym
melt is determined completely by the eigenvalue and eig
vector spectrum of the connectivity matrixG. In this paper
we have focused on some properties that are determine
the eigenvalues alone~e.g., the stress relaxation function!
since the eigenvectors are hard to obtain. We have used t
different methods to examine the eigenvalue spectrum: fi
the construction of an exact solution for the averaged eig
value density for a fixed cross-link strength, second, a v
precise numerical solution for the case of varying cross-l
strengths, and third, a numerical diagonalization of rand
connectivity matrices.

The first method allowed for some exact results regard
the eigenvalue spectrum. It could be shown that the eig
value spectrum consists of a very complicated but counta
set ofd peaks, some of which could be calculated and co
pared with results from numerical diagonalization. Furth
more, we showed that the eigenvalue density does not s
~exact! scaling behavior.

The second model of fluctuating cross-link strengths
the advantage that the eigenvalue spectrum becomes a
tinuous function instead of an inscrutable sum ofd peaks.
Additionally, it allowed for a fast numerical integratio
scheme. From these numerical solutions it could be infer
that the expected Lifshitz-tail behavior for smallg seems to
set in only for extremely smallg, smaller than is accessibl
numerically. For this reason, the stress relaxation funct
does not show a stretched exponential form with expon
b5 1

3 within the accessible time window. Instead, for th
times that could be reached, there seems to be a reg
where an apparent stretched exponential with a cross-
concentration-dependent and thus nonuniversalb is ob-
served. Furthermore, in numerical evaluations of the eig
value spectrum again scaling could not be observed, not e
approximately, since at least two, possibly three or mo
differentg scales with differentc dependence could be iden
tified. As a consequence, the stress relaxation function d
not scale either.

The third method, numerical diagonalization, confirm
all results obtained so far very well. In particular it show
that the stress relaxation shows stretched exponential be
ior with a concentration-dependent exponentb and it
showed the failure of scaling of the stress relaxation fu
tion. It confirmed, however, the experimental findings that
the critical concentration the stress relaxation function
cays algebraically with exponentD. For the mean-field
model, both theory and numerics yield the exponentD51.
Furthermore, numerical diagonalization allows for going b
yond the mean-field approach. Results were obtained
connectivity matrices on two- and three-dimensional cu
lattices. Unlike the mean-field case, the density of eigenv
ues now diverges at the critical concentration asg→0, and
consequently the viscosity shows a power law divergence

ts
4-14
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STRESS RELAXATION OF NEAR-CRITICAL GELS PHYSICAL REVIEW E64 021404
opposed to a logarithmic divergence as seen in the m
field case. The critical exponent for the viscosity is found
be k'1.19 (d52) andk'0.75 (d53). The exponentD is
found to beD'0.74 (d52) and D'0.83 (d53). These
results are comparable to the experimental findings~see the
Introduction!. If dynamical scaling, Eq.~1!, holds, the criti-
cal exponentz is determined by the scaling relationD5(z
2k)/z, which givesz'4, also in good agreement with ex
periments.

The Rouse model has some limitations: Excluded volu
effects, hydrodynamic interactions, and entanglement
naturally beyond its scope. Hence we consider our work a
first step toward a quantitative analysis of stress relaxatio
polymer gels and are presently working on extensions of
dynamic model to include hydrodynamic as well as exclud
volume interactions.
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APPENDIX A: LOW FREQUENCY EXPANSION
OF THE RESOLVENT

1. Generalp„l…

The low frequency expansion is derived from an alter
tive form of the integral equation~33!. We start from Eq.
~30! and recall an integral representation of t
n-dimensional Laplacian@see also Eqs.~3.47!–~3.51!! in
Ref. @13##

E dŷ

~2pV!n/2
expH 2

~ x̂2 ŷ!2

2V
J f ~ u ŷu!

5expH V

2 S d2

dr2
1

n21

r

d

dr D J f ~r!U
r5ux̂u

. ~A1!

We use this representation in the numerator of Eq.~30! and
take the limitn→0. To evaluate the denominator of Eq.~30!
we observe that

lim
n→0

E dx̂f n~ ux̂u!5 f 0~0!1O~n!. ~A2!

Both steps taken together lead to the following se
consistent equation forgV(r):

gV~r!52ce22cE
0

`

dlp~l!expH 1

2il S ]2

]r2
2

]

r]r D J
3expH iV

2
r21gV~r!J , ~A3!
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which is of course equivalent to the integral equation~33!,
but much better suited for a low frequency expansion.

To that end we rescale variables according tox5AVr
and CV(x)5gV(x/AV). The self-consistent equation the
reads

CV~x!52ce22cE
0

`

dlp~l!expH V

2il S ]2

]x2
2

]

x]xD J
3expH i

2
x21CV~x!J . ~A4!

We look for a solution in terms of a power series inV,

CV~x!5(
j 50

`

~V! jC j~x!. ~A5!

The resolvent can then be expressed in terms ofC j (x) as

G~V!52P11
i

2cV (
j 50

`

V jE
0

`

dxxC j~x! ~A6!

with Pn5*0
`dll2n p(l) as defined after Eq.~38!. The low-

est order term obeys the equation

C0~x!52c exp~22c!expS i

2
x21C0~x! D , ~A7!

which is solved by

C0~x!52W„22c exp~22c!exp~ ix2/2!…. ~A8!

Here W denotes the principal branch of Lambert’sW func-
tion, defined as the solution of

W~x!exp@W~x!#5x. ~A9!

From Eq. ~A7! one derives the following property of th
lowest order solution:

C08~x!5
ixC0~x!

12C0~x!
~A10!

which allows for an exact computation of the integral

i E
0

`

dxxC0~x!52
1

2E0

`

dx
d

dx
@12C0~x!#252c~c21!.

~A11!

The next two terms are given by

C1~x!5
1

12C0~x!

P1

2i S d2

dx2
2

d

x dxD C0~x!, ~A12!

C2~x!5
21

12C0~x! S d2

dx2
2

d

x dxD S P2

8
1

P1
2

12C0~x!
D

3S d2

dx2
2

d

x dxD C0~x!. ~A13!
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The integrals*dxxC j (x) can be performed like Eq.~A11!,
using the properties of Lambert’sW function. The computa-
tions, however, become increasingly tedious, so that hig
order terms have been computed only for the special di
bution p(l) ~see below!.

2. Specialp„l…

We start from Eq.~A3! and introduce the abbreviatio
Drªd2/dr22d/rdr. For the special choice p(l)
5(1/l2)exp(21/l), one can perform the average overp(l)
analytically,

E
0

`dl

l2
expH 2

~11 iD r/2!

l J expH iV

2
r21gV~r!J

5S 11
iD r

2 D 21

expH iV

2
r21gV~r!J . ~A14!

The resulting differential equation simplifies, if we introdu
the functionf V(r2/2)ªgV(r),

f V~r2/2!1 ir2/2f V9 ~r2/2!52c exp~22c!exp@ iVr2/2

1 f V~r2/2!#. ~A15!

Introducing the new variablex5r2/2 leads to the differentia
Eq. ~72! quoted in the main part of the paper. For the lo
frequency expansion it is convenient to introduce yet ano
variable,y5Vx, in terms of which the differential equatio
for hV(Vx)ª f V(x) reads

hV~y!2 iyVhV9 ~y!52c exp~22c!exp@ iy1hV~y!#.
~A16!

The ansatzhV(y)5( j 50
` (V) jhj (y) then yields

hn~y!2 iyhn219 ~y!5h0~y!
1

n!

dn

dVn

3expS (
j 51

`

~V! jhj~y!D
V50

.

~A17!

The left hand side is linear inhn(y), so that Eq.~A17! is
easily iterated.

3. Proof of the existence of a Lifshitz tail inD„g…

The aim of this Appendix is to prove that the density
eigenvaluesD(g) shows a Lifshitz-tail behavior forg→0
andc,1/2. For the proof, it is convenient to make use of t
eigenvalue distribution functionF(g)ª*2`

g dg8D(g8). This
can be done without loss of generality because ifF(g) has a
Lifshitz tail, so doesD(g). It will be shown thatF(g) lies
between two bounds which, taken together, assert the
shitz behavior.

For a given realization of a system withN vertices~or
polymers!, the correspondingFN(g) can be written, using a
decomposition into theK clusters of the realization,
02140
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FN~g!5
1

N (
k51

K

Tr Q~g2Gk!

5
K

N
1

1

N (
k51

K

Tr@~12E0
k!Q~g2Gk!#, ~A18!

whereGk is the connectivity matrix of thekth cluster andE0
k

is the projector on the null space ofGk . In the macroscopic
limit N→`, this yields

F~g!5~12c!Q~g!1 (
n51

`

tn^Tr@~12E0
n!Q~g2G~Tn!!#&

~A19!

due to self-averaging. The bracket^•••& means averaging
over the set of all numbered trees$Tn% of size n of which
there arenn22. G(Tn) denotes the connectivity matrix corre
sponding to the treeTn . The average number of trees of siz
n per vertex is denoted bytn and is given by@15#

tn5
nn22

2cn!
~2ce22c!n5

1

2cA2p
n25/2e2nh(c)2 f (n)/n

~A20!

according to Stirling’s formula withh(c)52c212 ln(2c)
and some functionf (n) with 0, f (n),1.

The smallest nonzero eigenvalue ofG(Tn) is certainly
greater than or equal to the smallest nonzero eigenvalu
the linear cluster withn vertices, which is proportional to
n22, i.e.,

G~Tn!>
a

n2
~A21!

~except for the zero eigenvalue! with somea independent of
n. This results in

Tr@~12E0
n!Q„g2G~Tn!…#<~n21!Q~g2a/n2!

~A22!

or

F~g!<12c1 (
n>Aa/g

~n21!tn for g.0. ~A23!

For g→0, the sum can be approximated by an integral,

F~g!<12c1
1

2cA2p
E

Aa/g

`

n23/2e2nh(c) ~A24!

'12c1
1

2ch~c!A2p
S g

a D 3/4

expH 2h~c!S a

g D 1/2J .

~A25!

This is the lower bound forF(g).
For the upper bound, Eq.~A19! will be used again. Ex-

plicitly, one has forg.0
4-16
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F~g!512c1
1

2c (
n51

`
1

n!
~2ce22c!n

3(
$Tn%

Tr@~12E0
n!Q„g2G~Tn!…# ~A26!

>12c1
1

2c (
n51

`
1

n!
~2ce22c!n

3 (
$Ln%

Tr@~12E0
n!Q„g2G~Ln!…#, ~A27!

where the inner sum has been restricted to the set oflinear
numbered trees$Ln%. There aren!/2 such linear trees, suc
that

F~g!512c1
1

4c (
n52

`

e2n[h(c)11] Tr@~12E0
n!Q„g

2G~Ln!…#. ~A28!

Next, the trace, which is a sum of non-negative terms
estimated by just one of the terms. In particular, Tr@(1
2E0

n)Q„g2G(Ln)…#>Q(g2a/n2), corresponding to the
smallest eigenvalue ofLn . This finally gives

F~g!>12c1
1

4c (
n>Aa/g

e2n[h(c)11] ~A29!

'12c1
1

2c@11h~c!#
expH 2S a

g D 1/2

@11h~c!#J
~A30!

for the lower bound.
The upper and the lower bound together imply

lim
g→0

lnu ln@F~g!211c#u
u ln gu

5
1

2
~A31!
l

-

e

02140
is

or, even stronger,

Aah~c!<2 lim
g→0

g1/2 ln@F~g!211c#<Aa@h~c!11#,

~A32!

which is the sought-for Lifshitz-tail behavior.

APPENDIX B: DETAILS OF THE EXACT SOLUTION OF
THE INTEGRAL EQUATION

1. Solution of the integral equation

It is not obvious how to solve the fix-point equations 6
because the coefficients of thei th iteration are labeled by an
index, and a subsequent iteration gives rise to coefficie
that are labeled by a sequence (l k). We therefore try to map
the sequence (l k) that appears as index onto a number
writing nª(k50

` l kM
k with some MPN. For this to be a

one-to-one map, we need to restrict alll k to be ,M . This
restriction will be removed later when we letM→`. The
sequence (l k) can be reconstructed fromn by writing n in the
number system of baseM. Let this be indicated byl k

5(n)k
M .

The fix-point equations can now be written down as

an5e22c)
k50

`
~2cak!

(n)k
M

~n!k
M!

, ~B1!

zn511
1

V212 (
k50

`

~n!k
Mzk

. ~B2!

The equations foran can be solved independently from tho
for zn . We start withan . Successively solving the system o
equations~B1! by inspection gives

a05e22c, ~B3!
an55
e22c

~2ca0!n

n!
for 1<n,M

e22c )
k50

M21
~2cak!

(n)k
M

~n!k
M!

for M<n,M M

e22c )
k050

M21

••• )
kM2150

M21 ~2cak01Mk11•••1MM21kM21
!(n)k01Mk1•••

M

~n!k01Mk1•••
M !

for M M<n,M MM
,

~B4!

~B5!

~B6!
and so on. The coefficienta0 is obviously independent of al
other an . This property will be called ‘‘class 0.’’
a1 , . . . ,aM21 depend only ona0: this will be termed ‘‘class
1.’’ Analogously,aM , . . . ,aMM21 are in class 2 as they de
pend only ona’s from classes 0 and 1.

Now we can letM tend to infinity. Classes 0 and 1 ar
simple ~the upper index now denotes the class!:
a0
05e22c, ~B7!

an
15e22c

~2ce22c!n

n!
, n>1. ~B8!

If we drop the constraintn>1, Eq. ~B8! automatically con-
tains class 0.
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For the higher classes, as we are now consideringM
→`, indexing via a numbern is no longer possible. Instead
for class 2, we have to revert to using a finite sequence
index. For class 3, even this is not sufficient and a nes
sequence (l (ki )

) is needed:

a( l k)
2 5e22c)

k50

`
~2cak

1! l k

l k!
, length of~ l k!.1, ~B9!

a( l (ki )
)

3 5e22c )
$(ki )%

~2ca(ki )
2 ! l (ki )

l (ki )
!

. ~B10!

If the constraint@length of (l k).1] is dropped and if the
explicit expressions for thea from the lower classes are re
cursively inserted, all classes up to class 2 are containe
one formula, Eq.~B9!. An analogous statement holds for E
~B10!.

In general, for classm, the index will be of the form
( l (k

�(r i )
)) with m nesting levels. The general result is thus

a( l (k
�(r i )

))
m 5e22c )

$(k
�(r i )

)%

~2ca(k
�(r i )

)
m21 ! l (k

�(r i )
)

l (k
�(r i )

)!
. ~B11!

With the same reasoning as above we can calculate
zn . We find the same classes, and the results are

z0
05

V

V21
, ~B12!

zn
15

V2nz0
0

V212nz0
0

, ~B13!

z( l k)
2 5

V2 (
k50

`

l kzk
1

V212 (
k50

`

l kzk
1

, ~B14!

A

z( l (k
�(r i )

))
m 5

V2 (
$(k

�(r i )
)%

l (k
�(r i )

)z(k
�(r i )

)
m21

V212 (
$(k

�(r i )
)%

l (k
�(r i )

)z(k
�(r i )

)
m21

. ~B15!

2. Properties of the solution

If one asks for the total weight of a particular peak at, s
someg0 ~up to classm), one has to find all finite solution
( l k) of the diophantic equation
02140
as
d

in

he

,

g02 (
k50

`

l kzk
m21~g0!50. ~B16!

This is possible in some special cases, e.g., forg051 in
class 2. Sincezn

1(1)51, it follows that Eq.~B16! is satisfied
if and only if exactly one entry of (l k) equals 1 whereas al
the others are 0. Adding up all of the weights yiel
e22c@(2ce22c21)e2ce22c

11# as the total weight ofd(g
21) from class 2.

The z( l k)
m have several noteworthy properties, most

which are easy to prove by induction overm and are there-
fore listed below without proof.

~1! z( l k)
m is a rational function ofg with integer coeffi-

cients.
~2! The degree of the numerator is the same as that of

denominator.
~3! The coefficient of the highest power is 1 in both n

merator and denominator.
~4! z( l k)

m is a strictly monotonically decreasing functio

~except at its poles!.
~5! All roots and poles ofz( l k)

m are located on the non

negative real axis.
~6! z( l k)

m has exactly as many poles as roots. Roots a

poles alternate, starting with a root at 0.
~7! There is exactly one more root ofz( l k)

m than there are

poles in(k50
` l kzk

m21 .
~8! The sum( i u(]z( l k)

m /]g)(g ( l k) i
m )u21 over all rootsg ( l k) i

m

of z( l k)
m equals 1. As stated in the text, this can be prov

using Cauchy’s integration theorem.

Consider now somez( l k)
m and choose (l k) such that only

the nth entry is nonzero. Then we have

z0, . . . ,0,l n,0, . . .
m 5

g2 l nzn
m21

g212 l nzn
m21

. ~B17!

Between two of its poles~see the list of properties above!,
zn

m21 is a continuous function that maps one to one onto
real numbers; therefore there exists ag l n

m in this interval such

that z( l k)
m (g l n

m)50. Moreover, whenl n→`, the g l n
m converge

to the root gn,i
m21 of zn

m21 in this interval. Sincezn
m21 is

monotonically decreasing,g l n
m,gn,i

m21 . This implies that for

every peak in the spectrum there are infinitely many ot
peaks to the left of it in any arbitrarily small interval aroun
this peak. This also applies recursively for each of the
satellite peaks. Only the peak at 0 is different: as stated in
list above, all roots ofz( l k)

m are >0 and thus there are n

satellite peaks ofd(g).
s.
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